
NOAA Technical Memorandum NMFS-PIFSC-57 

December 2016
doi:10.7289/V5/TM-PIFSC-57 

Applications of Hawaii Longline Fishery Observer and  
Logbook Data for Stock Assessment and Fishery Research 

William A. Walsh 
Jon Brodziak 

Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
National Oceanic and Atmospheric Administration 
U.S. Department of Commerce 

http://dx.doi.org/10.7289/V5/TM-PIFSC-57


About this document 

The mission of the National Oceanic and Atmospheric Administration (NOAA) is 
to understand and predict changes in the Earth’s environment and to conserve and 
manage coastal and oceanic marine resources and habitats to help meet our 
Nation’s economic, social, and environmental needs.  As a branch of NOAA, the 
National Marine Fisheries Service (NMFS) conducts or sponsors research and 
monitoring programs to improve the scientific basis for conservation and 
management decisions. NMFS strives to make information about the purpose, 
methods, and results of its scientific studies widely available. 

NMFS’ Pacific Islands Fisheries Science Center (PIFSC) uses the NOAA 
Technical Memorandum NMFS series to achieve timely dissemination of 
scientific and technical information that is of high quality but inappropriate for 
publication in the formal peer-reviewed literature.  The contents are of broad scope, 
including technical workshop proceedings, large data compilations, status reports 
and reviews, lengthy scientific or statistical monographs, and more. NOAA 
Technical Memoranda published by the PIFSC, although informal, are subjected to 
extensive review and editing and reflect sound professional work.  Accordingly, 
they may be referenced in the formal scientific and technical literature. 

A NOAA Technical Memorandum NMFS issued by the PIFSC may be cited 
using the following format: 

Walsh, W.A. and J. Brodziak. 
2016. Applications of Hawaii Longline Fishery Observer and 

Logbook Data for Stock Assessment and Fishery Research. U.S. 
Dep. Commer., NOAA Tech. Memo., NOAA-TM-NMFS-PIFSC- 
57, 62 p. + Appendices. doi:10.7289/V5/TM-PIFSC-57.

__________________________ 

For further information direct inquiries to 
Chief, Scientific Operations 
Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
National Oceanic and Atmospheric Administration 
U.S. Department of Commerce 
1845 Wasp Boulevard 
Building #176 
Honolulu, Hawai`i 96818 

Phone: 808-725-5331 
Fax: 808-725-5532 

_________________________________________________________ 
Cover:  Photograph courtesy of Stuart Arceneaux, Pacific Islands Regional 
Observer Program, National Marine Fisheries Service. 

http://dx.doi.org/10.7289/V5/TM-PIFSC-57


Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
National Oceanic and Atmospheric Administration 
U.S. Department of Commerce 

Applications of Hawaii Longline Fishery Observer and  
Logbook Data for Stock Assessment and Fishery Research 

1William A. Walsh 
2Jon Brodziak 

1Pacific Islands Fisheries Science Center 
 National Marine Fisheries Service 

1601 Kapiolani Boulevard, Suite 1000 
 Honolulu, Hawaii 96814 

2Pacific Islands Fisheries Science Center 
 National Marine Fisheries Service 

1601 Kapiolani Boulevard, Suite 1000 
 Honolulu, Hawaii 96814 

NOAA Technical Memorandum NMFS-PIFSC-57 

December 2016

doi:10.7289/V5/TM-PIFSC-57

http://dx.doi.org/10.7289/V5/TM-PIFSC-57


 

 

  



 

v 
  

CONTENTS 
 
 
 
 

INTRODUCTION ..................................................................................................................................... 1 

Section I. Preparation and Application of PIROP Fishery Observer Data.............................................. 2 

Methodological Overview ..................................................................................................................... 2 

Use of PIROP Data in Stock Assessments: Hawaii Longline Catches ................................................... 10 

Use of PIROP Data in Stock Assessments: Hawaii Longline Length Data ............................................ 10 

Use of PIROP Data in Stock Assessments: Hawaii Longline Species Composition .............................. 10 

Use of PIROP Data in Stock Assessments: International Stock Assessments ..................................... 11 

Review and Summary ......................................................................................................................... 12 

Section II. Evaluation and Application of Hawaii Longline Fishery Logbook Data .............................. 14 

Background Information ..................................................................................................................... 15 

Methodological Overview ................................................................................................................... 22 

Section III. Conclusions ....................................................................................................................... 31 

ACKNOWLEDGMENTS ......................................................................................................................... 32 

REFERENCES ........................................................................................................................................ 33 

FIGURES ............................................................................................................................................... 37 

TABLES ................................................................................................................................................. 50 

APPENDICES ........................................................................................................................................ 63 

Availability of NOAA Technical Memorandum NMFS .............................................................................. 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

vi 
  

 
  



 

vii 
  

  



 

1 
  

INTRODUCTION 
 

 
This technical memorandum provides a detailed record of the primary analytical methods used 
for stock assessment and fishery research that have been applied to the operational and catch data 
collected from the Hawaii-based pelagic longline fishery by the Pacific Islands Region Observer 
Program (PIROP) and Fisheries Science Center (PIFSC) of the National Marine Fisheries 
Service (NMFS) of NOAA Fisheries. The primary purpose of this memorandum is to document 
assessment-related research using the Hawaii longline data and also to provide a basis for the 
continued application and future improvement of analytical methods by serving as a user’s 
manual.  
 
The contents of this technical memorandum summarize data preparation, evaluation, and 
analysis for the PIFSC Stock Assessment Program (SAP) as conducted throughout two decades 
(1995˗2015). The senior SAP scientists who have directed much of the use of the data outputs 
and analytical results described herein have been Drs. Pierre Kleiber (retired) and Jon Brodziak.  
The technical memorandum is organized into three sections with four appendices. The first two 
sections are primarily related to use of data obtained from the federally mandated commercial 
logbook program initiated in November 1990, and from the PIROP, which commenced activities 
in February 1994. The PIROP was instituted to measure interaction rates between longline gear 
and protected or endangered species, especially sea turtles, following a statistical design to 
estimate turtle interactions (DiNardo, 1993). The last section provides conclusions and guidance 
on the application of Hawaii longline fishery data for stock assessment and fishery research. 
The information in the first two sections reflects the hierarchical use of fishery observer and 
logbook data for stock assessment and fishery research by the SAP of the PIFSC. The PIROP 
records are considered a high quality data set because the observer reports include detailed 
information about fishing operations as well as quantities, compositions, and dispositions of 
catches and are subject to thorough auditing procedures. The PIROP data include many 
operational fishing parameters that provide important information for conducting analyses such 
as standardizing the observed catch-per-unit-effort (CPUE) of pelagic fishes. The estimates of 
standardized CPUE using the operational parameters as covariates provide indices of relative 
stock abundance through time which, in turn, can be used as input information for conducting 
stock assessments. The PIROP data also provide information needed to measure the consistency 
of the self-reported logbook data, which comprise a much larger body of less detailed records, 
using graphical and statistical methods of comparison between observer- and self-reported 
commercial longline data. Thus, the quality and interpretation of the information in the logbook 
database depends, to some extent, on the observer information.  
 
Based on the ongoing assessment work of the Billfish Working Group of the International 
Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean, we have 
attempted to identify potential improvements in the analytical methods and documentation of 
applications used for billfish and other stock assessments. This focus on assessment-oriented 
applications is one theme of this technical memorandum. A second theme is to provide 
information to develop and maintain a scientific database for fishery research. In this context, the 
Hawaii longline fishery is characterized by multiple independent sources of data that are highly 
localized and hierarchically organized and that can be subjected to rigorous data checks and 
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comparisons. Thus, one of our intended goals is to ensure that estimates of the catches, including 
their species- and size compositions are as accurate as possible for use as inputs to stock 
assessments and for general fishery research. In general, ongoing development of a scientific 
longline fishery database and associated applications is likely to enhance the information content 
of both the PIROP and PIFSC logbook databases for stock assessment and fishery research.  
 
 

Section I. Preparation and Application of PIROP Fishery Observer Data 
 
 

In this section, we review the preparation, evaluation, and use of PIROP data for stock 
assessment and fishery research. Because the PIFSC stock assessment program needs to use 
catch, effort, and operational data collected by the PIROP, this section focuses on accessing 
these data and applying them to produce technical work that is clear and reproducible. 
Furthermore, we review some methods used to interpret PIROP data, in particular CPUE 
standardization for stock assessment, and provide guidance on possible technical improvements 
and other uses of these data for fishery research.  
  
The catch and operational data collected by PIROP are used for several assessment purposes, 
including estimation of pelagic fish catches, standardization of catch rates, and estimating other 
quantities of interest, such as bycatch interaction rates (McCracken, 2005). The Hawaii longline 
observer information is considered the best available data for stock assessment and fishery 
management applications. These include international assessment collaborations conducted as 
part of the International Scientific Committee for Tunas and Tuna-like Species in the North 
Pacific Ocean (ISC). Two recent ISC collaborations were the stock assessments for Pacific blue 
marlin Makaira nigricans (ISC 2016) and Western and Central North Pacific striped marlin 
Kajikia audax (ISC 2015), conducted by the ISC Billfish Working Group (BILLWG). The 
PIROP data have also been used by the ISC Shark Working Group, and Carvalho et al. (2014) 
recently used PIROP data for shortfin mako Isurus oxyrinchus to summarize nominal catch and 
effort statistics and to describe the distribution of this data-limited shark species. The PIROP 
data have also been used to produce fishery research which was published in the peer-reviewed 
literature. For example, Walsh et al. (2009) used PIROP data to quantify shark catch in the 
Hawaii longline fishery. Brodziak and Walsh (2013) used PIROP data and multimodel inference 
to standardize CPUE for oceanic whitetip shark Carcharhinus longimanus, a longline bycatch 
species, and Walsh and Brodziak (2015) conducted similar multimodel inference and CPUE 
standardization analyses for five species of incidentally caught billfishes.  
 
Methodological Overview 
 
This methodological overview section is divided into three parts. These are: (i) preparation of the 
PIROP data, (ii) evaluation of the PIROP data, and (iii) archival of the analytical data and 
results. Here we note that data preparation is a large but routine task, whereas data evaluation is 
not routine and requires detailed knowledge of the fishery.Both data sets and results should be 
archived to ensure reproducibility. In what follows, we use boldface type to denote ORACLE 
databases, files, and field names or R function or packages (R Core Development Team, 2013).  
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Preparation of PIROP Data  
Data extraction from the ORACLE databases has typically been conducted on UNIX platforms 
supported at the PIFSC. Both the PIROP and the longline logbook data are located in the highly 
migratory species enterprise database at the PIFSC. Detailed information on the structure of the 
enterprise ORACLE database is available at: http://ias.pifsc.noaa.gov/lop_rpts/lodsprinttablelist 
and also at the InPort PIFSC Hawaii Longline Logbook Metadata Portfolio, which is available 
at https://inport.nmfs.noaa.gov/inport/item/2721. 
 
The ORACLE database that stores the PIROP and logbook data is organized into schemas and 
tables. Of these, four schemas and nine tables are typically required to prepare stock assessment 
data for the Hawaii longline fishery. Preparation of the PIROP data primarily uses the schema 
NEWOBS. The associated table CATCH_MV contains the detailed catch and operational data 
from the entire history of the PIROP. This schema also includes three LEGACY tables, which 
contain fish size measurements collected during 1994˗2002. The schema ORADATA holds the 
table WALSH_MARLIN, which contains corrected catch data for billfishes from 1994˗2004 
(Walsh et al. 2007). The schema LLDS includes the table 
MOON_FRACTION_ILLUMINATED, which contains the nightly values of the illuminated 
fraction of the moon from the US Naval Observatory 
(http://aa.usno.navy.mil/data/docs/MoonFraction.php). The latter two schemas and their 
associated tables can also be used to prepare the logbook data. Logbook data preparation requires 
use of the tables LOGHDR and LOGDETAIL, which are in the schema OPDT. The 
LOGHDR table contains the set-level fishery operational data that is used to uniquely identify 
and prepare the individual longline sets as the observations in the analytical data frame. The 
LOGDETAIL table contains species-specific catch tallies, information about the conditions of 
caught fishes, and information about protected species interactions. 
 
The preparation of the PIROP data consists of nine steps (Fig. 1) in a work flow that begins with 
fishery data collection and evaluation by the PIROP and proceeds through protocols followed 
within the assessment program to initiate projects, including pelagic fish stock assessments. 
While the full work flow includes nine steps, the PIROP data may be first used for assessment 
purposes at the fourth step. The ongoing archival of data is depicted by the seventh and eighth 
boxes, representing data and analytical results, respectively. 
 
An example of logbook data preparation is also provided (Appendix A), and PIROP observer 
data would be treated similarly in most respects. Data preparation entails the extraction of data 
files from an ORACLE database and importing these data files into R as data frames (Example 
A 1). This process requires several additional steps (Example A 2), which include linking data 
frames, selecting an appropriate suite of operational and catch variables, calculating derived 
variables, deleting longline sets with missing predictor values (or imputing missing values if 
applicable), deleting outlier longline sets, and truncating the selected data to use an appropriate 
time period or type of fishing effort. We also note that Appendix C shows the actual data 
collection forms used, which include three important observer data forms as well as the current 
logbook form. 
 
The preparation of an analytical file with PIROP observer data typically begins with the creation 
of a vector of unique longline set identifiers to specify the fishing operations to be used in the 

http://ias.pifsc.noaa.gov/lop_rpts/lodsprinttablelist
https://inport.nmfs.noaa.gov/inport/item/2721
http://aa.usno.navy.mil/data/docs/MoonFraction.php
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analyses. The unique identifier for each longline set is typically assigned as the serial number of 
the logbook page recorded for that set. Catches of various species can be tabulated by sets and 
can be matched to the appropriate longline set identifier to build the analytical file. Operational 
variables are added similarly. It is important at this stage to ensure that the longline set identifier 
variable is a character variable. In particular, note that using the R command read.table to read a 
dataframe from file into R may turn the longline set identifier field (typically named 
LOGBK_PG_NUM) into a factor variable which will cause subsequent attempts to match 
operational and catch data to the correct longline sets to fail. It is also important to check that the 
longline set identifiers do not include records with the values NA (not available) or <NaN> (not 
a number) for the set identifier because estimates of fishing effort would be artificially inflated 
by these empty rows in the data set. Also, the imputation of missing operational variables may be 
useful to retain longline information that would otherwise be excluded due to missing values.  
A typical set of procedures for manipulating an analytical data file prepared with PIROP 
observer data is listed and summarized in Table 1. Note that the total catch of a species is 
obtained by summing the numbers caught on all observed sets. The fields for individual fish 
condition (i.e., alive or dead) and disposition (i.e., kept or discarded) allow one to estimate the 
on-board handling mortality as the difference between the numbers of survivors of the haul 
(CAUGHT_COND_CODE==”A”) and the dead discards (KEPT_RETURN_CODE==”D”). 
In this context, the on-board handling mortality can be added to the kept catch to estimate the 
total number of dead fish caught per set. It should be noted that the descriptions of fish condition 
after capture and at release are subjective but may be useful for management. 
 
One important data manipulation is the addition of the definition of the fishery sector (Table 1) 
or set type for each longline set. There are two types of sets in the Hawaii longline fishery and 
these comprise the deep-set and shallow-set fishery sectors. The sector type (Set_type) can be 
assigned to any longline set using the R ifelse statement to set sector type as shallow (S) or deep 
(D) based on the number of hooks per float (HKS_PER_FLT) for the longline gear as 
 Set_type<- ifelse (HKS_PER_FLT<15,”S”,”D”)  
The importance of this manipulation stems from the fact that the Hawaii longline fishery has 
been managed based on deep- and shallow-set fishery sectors since 2004 (US Department of 
Commerce 2004). In this case, the deep-set sector is typically targeting or fishing for bigeye tuna 
Thunnus obesus, while the shallow-set sector is fishing for swordfish Xiphias gladius. Here the 
ifelse statement means that if the number of hooks per float on a longline set is less than 15, the 
effort is in the shallow-set sector and the set type is S (character variable); else if more than 15 
hooks per float are used, then the effort is in the deep-set sector and the set type is D. 
 
The size information for the Hawaii longline catch collected by the PIROP is listed as two entries 
(Table 1) because the morphometric measurements are stored in two different file formats. The 
early format is the LEGACY table which changed in August 2003 to the current format which is 
the CATCH_MV table. To prepare a continuous time series of size data, one can concatenate 
the vectors of comparable measurements obtained from the LEGACY (prior to August 2003) 
and the CATCH_MV tables (August 2003 to the present). In general, the morphometric 
measurements can be used to calculate length conversion regressions. For example, by selecting 
fish of any species with both fork and precaudal length measurements, a bivariate regression of 
the precaudal length on the fork length can be computed. This regression can then be used to 
predict the precaudal lengths of animals that were only measured for fork length. 



 

5 
  

 
The PIROP observers also record comments on their observations at sea. Observer commentary 
is typically available for a small fraction of the sets, but it can be useful for interpreting the 
PIROP data. For example, an observer might comment that there was uncertainty about the size 
or species composition of the catch on a longline set. In this case, the appropriate action could be 
to delete the observation resulting in some loss of information for an analysis, or retain the 
observation resulting in potential bias. In either case, the observer comment can help to make an 
informed decision. 
 
The procedures involved in incorporating sea surface temperature data (SST in °C) into the 
PIROP data records (Example A 3) are presented here in full because this step requires the use 
of an additional record matching program. Information to use the matching program is stored in 
the folder /home/las/matcher on the Linux machine mar.pifsc.gov, which is part of the PIFSC 
OceanWatch Program. To begin, the script file_checker.pl , which is in the folder 
/home/las/matcher/input_checker/, is run to check whether the format of the input file is 
correct. Given the input file format is correct, the matcher program make_matches_V3 can be 
run to add the SST values to the PIROP data set. The matcher program is stored in the folder 
/home/las/matcher/bin and uses Ferret software to match various data sets as specified on the 
command line. A typical program run may require approximately 13 hours to process an input 
file of about 60,000 lines and generate the final output file. It is important to check that the input 
file format for the matcher is correct and includes a negative sign for the floating point values of 
longitude. It is also important to include two decimal places for the latitude and longitude values 
within the linking string variable. Additional variables, whether obtained from the PIROP or 
external sources including remote-sensing data, can also be easily matched to the longline set 
and catch information. Overall, these standard procedures for preparing the PIROP data enhance 
reproducibility and efficiency. 
 
Evaluation of PIROP data  
PIROP data are typically checked to assess whether data collected during fishing operations 
typical of the longline fleet were accurate. It is important to note that the longline fishing vessels 
can exhibit operational problems as well as changes in fishing gear. As a result, some data may 
be unsuitable for analytical purposes because the associated fishing operations were atypical or 
outliers. For example, a commercial shallow set with an unusually large catch of blue sharks 
(i.e., ≈ 100) or a deep set with numerous mahimahi Coryphaena hippurus may be unsuitable 
because it was not possible for the observer to get an accurate count of the total number of fish 
given their other duties.   
 
Changes of fishing vessel names are not uncommon in this fishery, which can cause confusion 
when checking data. The permit number (PERMIT_NUM) is useful for data evaluation because 
it remains with the hull; as a result, data can be checked over time against a single number rather 
than one or more vessel names.  These unique hull numbers are accessible 
at http://www.st.nmfs.noaa.gov/coast-guard-vessel-search/. 
 
Outliers in the PIROP data that were caused by poor performance of longline fishing gear can 
generally be identified by checking one or more indicator variables (Table 2; Appendix A ). The 
first indicator variable to check is the longline soak duration, which typically averages 20 hours 6 

http://mar.pifsc.gov/
http://file_checker.pl/
http://www.st.nmfs.noaa.gov/coast-guard-vessel-search/
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minutes and 19 hours 36 minutes in the shallow- and deep-set sectors, respectively. A relatively 
long soak can result from gear damage or other operational problem, such as a protected species 
interaction. A long soak can be investigated further using additional fields obtained directly from 
the CATCH_MV table (e.g., SET_INTERACT_YN or LINE_PARTED_YN). Long soak 
durations can cause distorted catch patterns. For example, the two highest blue shark catches 
ever recorded in the PIROP observer data (359 sharks per set) were taken on two sets with 27 
and 45 hour soaks, respectively. One of these sets included a protected species interaction and 
yielded a catch of 5 other fish, while the other set included a breakdown that necessitated a return 
to port with a catch of only 9 other fish. The second indicator variable to check is the time when 
the longline set begins, or the begin-set time. In this case, delayed gear deployment can be 
expected to produce lower catches. The third indicator variable to check is the length of the 
mainline. In this case, a very short mainline length may indicate that the longline set was being 
used to test a new gear configuration. 
 
Another important aspect of PIROP data evaluation is to check for species misidentifications. 
For example, Walsh et al. (2005) reported that at least 2% of the PIROP trips prior to June 2002, 
exhibited systematic misidentifications of billfishes by observers. These misidentifications 
primarily involved striped marlin Kajikia audax being incorrectly reported as blue marlin 
Makaira nigricans. In this context, public fish auction records may be available to provide a 
definitive check on the reported catches of economically valuable, incidentally caught or target 
species (Walsh et al. 2005). Identifications of bycatch species, including many sharks, can also 
be evaluated on the basis of observer comments, observer experience, photographs 
(PHOTO_YN), or specimens (SPECIMEN_YN), and the known distributions of pelagic fishes 
in the Pacific (e.g., Compagno, 1988; Mundy, 2005; Nelson, 2006).  
 
The accrued at-sea experience of an individual observer (O_OBSERVER_NUM) may be an 
important factor for species misidentifications. In particular, misidentifications appear to occur 
most frequently among new observers. For example, one analysis of PIROP-reported shark 
catches during 1994–2006 revealed that a disproportionately high fraction (25%) of the total 
catches of the 10 least common species were reported in two years, from 2000 to 2001. During 
those years, the PIROP expanded its coverage of the longline fishery roughly fourfold, and the 
annual mean levels of accrued observer experience were relatively low. This example suggested 
that new observers, added in 2000-2001, had higher rates of species misidentifications than 
experienced observers and also exhibited a proclivity for errors involving uncommon species.  
Another important consideration regarding use of PIROP-reported data is that detailed 
evaluations have only been conducted for tunas, sharks, and some billfishes (Walsh et al., 2005; 
2007; 2009). Hence, if the scope of stock assessments or other research is to be expanded to 
include more species, it would necessitate long-term, species-specific evaluations of the PIROP 
data. For example, a shortbill spearfish assessment may be difficult to conduct using the PIROP 
data because this species tends to follow a similar seasonality in the longline catch as striped 
marlin, resembles striped marlin, and had very high nominal catch rates during 1998–2000, 
which included two years of low PIROP observer coverage rates (about 5% during 1998–1999).  
To evaluate landings and discarded catch data for a particular species, species-specific effects 
can be expected and may be important. For example, the actual fishery-related effects for a target 
species such as bigeye tuna, particularly if subject to a quota, could involve high grading 
(HIGH_GRADING_YN or HIGH_GRADING_COMMENTS). This discarding practice 
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involves selecting the most valuable fish for landing and discarding others at sea, possibly 
including conspecifics, to maximize economic returns while minimizing apparent fishery-related 
effects. Other reasons for discarding on longline trips could include spoilage (e.g., if a large 
catch of dolphinfish was taken early in a trip) or improved catch rates during the trip, with 
greater target catches later in the trip.  
 
In summary, it is useful to evaluate the PIROP data to potentially improve the accuracy and 
precision of analytical data sets by identifying outliers in both catch-related and operational 
variables.  
 
Archival of PIROP Data 
Archival of analytical PIROP data sets commences by establishing a directory with a self-
explanatory name and then storing a file with the data preparation notes therein. The data file is 
named and saved in text format using the write.table command in R. Thus, if necessary, the 
analytical data file could be recreated using the preparation notes, even as a copy exists in text 
format. Other appropriately named files can also be prepared (using write.table) to facilitate 
examination of various features of the data; e.g., a file Disposition.txt might contain the fields 
needed to calculate handling mortality with the associated set information. Statistical analyses 
and results can be summarized and archived in one location. 

 
The archival of PIROP data and results is an efficient standard operating protocol, particularly in 
the context of periodically conducted work, such as stock assessment updates, and ensures that 
data files from associated previous studies are readily available. As a result, any need to re-
evaluate catch or effort data before the initiation of modeling or other analytical work can be 
minimized. 
 

Use of PIROP Data in Stock Assessments: Hawaii Longline CPUE Standardization 
 
Analyses to standardize Hawaii longline CPUE have been conducted for several species of 
pelagic fishes taken as targets, incidental catch, or bycatch and reported as counts using PIROP 
data. These analyses have been conducted for both research and stock assessment purposes and 
have used common statistical approaches to standardize CPUE (Maunder and Punt, 2004). 
Calculations to standardize CPUE have typically been done using the R language (R 
Development Core Team, 2008) and require the use of several libraries and packages (Crawley, 
2013; and Zuur et al., 2009; 2012). For example, the negative binomial distribution, a natural 
error structure choice for fishes reported as counts, requires the library mass. The negative 
binomial generalized linear model (GLM) can be fitted with the function glm.nb. Zero-inflated 
models, which can account for observations of excess zeros, can be fitted by calling the R 
package pscl and using the zeroinfl function. Other types of models can be fitted by using the 
standard R function glm and specifying a Poisson distribution with the family option 
(family=poisson). 
 
The CPUE standardization analyses using the Hawaii longline data have typically treated 
longline sets as independent observations, as in Brodziak and Walsh (2013). This approach was 
based upon the assumption that within-trip relationships among individual sets can exert 
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positive, negative, or indirect effects of varying magnitudes. Examples of negative or positive 
effects include vessel movements away from areas with low catches of target species but towards 
areas of high catches of bycatch species, or vice versa. Indirect effects also include private at-sea 
communications among cooperating vessels leading to ensuing vessel movements to higher catch 
rate areas. We note that this approach may underestimate the uncertainty about the standardized 
CPUE of vessels with consistently correlated catches by sets within trips and may also lead to the 
selection of overly complex models (Walsh and Brodziak, 2015).  
 
Several types of GLMs have been fitted to standardize CPUE using PIROP data. Some standard 
GLM approaches for CPUE standardization have included counts models for the number of fish 
caught (Poisson, overdispersed Poisson, negative binomial), delta distribution models (delta-
lognormal, delta-gamma), as well as zero-inflated models (zero-inflated Poisson, zero-inflated 
negative binomial). These alternative GLMs represent different hypotheses about the nature of 
the stochastic process of fish capture by longline gear, as reflected by the variance to the mean 
ratio (e.g., Brodziak and Walsh, 2013). Model selection techniques based on information criteria 
and the use of Akaike weights (Burnham and Anderson, 2002) have been used to assess the 
relative likelihoods of alternative GLMs computed for oceanic whitetip sharks (Brodziak and 
Walsh, 2013) and billfishes (Walsh and Brodziak, 2015).  
 
The CPUE standardization process typically includes fitting a set of alternative fixed effects 
GLMs to the PIROP data using step-wise variable selection. The goal of the step-wise model 
fitting for the GLMs is to incorporate as many significant and important variables as possible 
(e.g., hook and bait types, soak duration, moon phase, begin-set time), while recognizing that 
patterns in fishing operations within fishery sectors can be expected to cause multicollinearity 
among predictive variables. For this reason, and because sample sizes of longline sets are 
typically large, on the order of thousands of records, step-wise variable selection has typically 
been conducted using reductions in the AIC per degree of freedom as an acceptance criteria (e.g., 
the variable is accepted if it produces a decrease of at least 5 AIC units/df), rather than AIC 
reductions alone, to avoid overfitting the CPUE standardization model. 
 
Fishing year and quarter are the first variables to include in the step-wise variable selection 
procedure to fit the GLMs because temporal effects are paramount for CPUE standardization 
(e.g., Maunder and Punt, 2004). After the temporal factors have been included in the GLM, the 
step-wise variable selection proceeds to consider fixed effects including factors and continuous 
covariates along with possible interactions. Reductions in the residual deviance and Akaike 
Information Criterion values are used to determine whether a predictive variable is retained in 
the CPUE standardization model. It is important to note that the significance of a deviance 
reduction between two GLM models, say GLM1 and GLM2, can be tested  with the R function 
anova by using the command anova(GLM1,GLM2,test=”Chisq”). For more information on 
sequential testing of variables in the context of fitting GLMs, see Crawley (2013) for example. 
Fishing region is another factor variable that is important for virtually all CPUE standardization 
analyses. These have been defined as large areas of the Pacific Ocean (Brodziak and Walsh, 
2013; Walsh and Brodziak, 2015), following the suggestion from Maunder and Punt (2004), 
stating that continuous variables with complex, potentially non-linear effects (e.g., latitude; 
longitude) be discretized. In this case, the region boundaries are set based on 10° latitudinal 
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increments that are convenient, and separation of the fishery longitudinally at 160°W reflects 
proximity to Honolulu, Hawai‛i rather than any underlying oceanographic feature. 
 
The longline fishery sector is another important CPUE standardization variable. In this case, the 
longline set types are tested as a two-level fixed effect factor variable following significance tests 
for the temporal and spatial factor variables. For both blue and striped marlins, however, greater 
deviance and AIC reductions were attained by treating set type effects as interactions with the 
number of hooks per float. In the shallow-set sector, the range of hooks per float is small and the 
effect is minor. In the deep-set sector, however, the hooks per float range (15–40 or more) is 
sufficient to reduce marlin catches because high values tend to sink the longline gear below 
depths preferred by billfishes. 
 
Sea surface temperature (SST) has also often been found to be an important predictive variable 
in CPUE standardization models, and some analyses have revealed non-linear effects. For 
example, SST effects were expressed as parabolic and linear terms for blue and striped marlins in 
the ZINB models, respectively (Walsh and Brodziak, 2015), which suggests that comparing SST 
effects on these billfish species could be informative. 
 
SST was also an important predictor in the zero-inflated negative binomial (ZINB) GLM 
analysis of oceanic whitetip shark catches per set, with complex effects (Brodziak and Walsh, 
2013). The negative coefficient for SST in the binomial model indicated that the probability of 
extra zeros would vary inversely with SST, and that zero catch observations in tropical waters 
were more likely to have been true zeros. The difference between the two histograms reflected a 
thermal barrier, with few positive catches below 24°C. The positive coefficient for SST in the 
counts process model represented a direct relationship between catch probability and SST, which 
would also be consistent with expectations for a tropical species. 
 
Comparable results were obtained from other ZINB analyses conducted for several billfish 
species (Walsh and Brodziak, 2015). For example, the coefficients for parabolic effects of SST 
in the counts process and binomial models for blue marlin were positive and negative, 
respectively, as would be expected for the most tropical of the istiophorids (Nakamura, 2001).  
 
The predict function in R can be used to calculate estimates of standardized CPUE for a fitted 
GLM object. For example, a fitted CPUE standardization model with the year, region, set type, 
and SST as predictors can be applied to a different data frame (newdata=std_data) comprised of 
a vector of fishing years (e.g., 1995–2014) and constants for the other predictors (e.g., Region 4; 
Set_type=D; 27°C). The output would be the estimated annual mean CPUE in the deep-set sector 
within Region 4 at a mean SST of 27°C. The CPUE trend can be estimated using the R command 
tapply(predict(GLM$year,newdata=”std_data”),mean). We note that Crawley (2013) also 
presents code to obtain the back-transformed fitted values for several GLMs with different 
distributional assumptions. 
 
In summary, recent CPUE standardizations conducted using the PIROP data from the Hawaii 
longline fishery have provided important information about the relative abundance of several 
species of large oceanic pelagic fishes. These studies have investigated and tested distributional 
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hypotheses about the process of longline capture and this represents a general improvement in 
the methods to standardize longline fishery CPUE for large oceanic pelagic fishes.  
 
Use of PIROP Data in Stock Assessments: Hawaii Longline Catches 
 
The Hawaii longline fishery catches by species are important inputs for stock assessments of 
highly migratory species in the North Pacific Ocean. This catch information derived from PIROP 
and logbook data has been used for tuna, billfish, and shark stock assessments conducted by the 
ISC and the WCPFC. For example, the catch for the 2011 striped marlin stock assessment 
(Walsh and Ito, 2011) was compiled using corrected striped marlin catch data (Walsh et al., 
2005; 2007), and PIROP data were used to estimate discarding and other fishery-related effects. 
This approach to estimating the Hawaii longline catch of striped marlin was consistent with the 
criteria for best available scientific data for stock assessments listed in Brodziak and Dreyfus 
(2011), who identify the need for accurate species identifications. The 2015 striped marlin stock 
assessment update also used the corrected catch data for 1975 to 2009 that was used in the 2011 
assessment (Walsh and Ito, 2011) because the nominal and uncorrected catch data in this fishery 
are known to be biased by misidentifications of striped marlin (Ito, 2015). However, corrected 
catch data were not available for 2010–2013 in the 2015 assessment update because there was 
insufficient time to conduct the detailed correction process based on checking dealer reports of 
striped marlin catches. 
 
Use of PIROP Data in Stock Assessments: Hawaii Longline Length Data 
 
Fish length data collected by the PIROP have been routinely used to characterize the size 
composition of Hawaii longline catches for stock assessments. These length data typically 
consist of fork lengths (tunas), eye-fork lengths (billfishes), and precaudal lengths (sharks).  
Lengths and other size data (e.g., half-girths) collected by the PIROP exhibit sampling variation 
but this has not been evaluated in a synoptic manner. Some graphical examinations revealed 
variability among observers taking morphometric measurements, with much of the variation 
attributable to differences in length measurement techniques (S. Arceneaux, PIROP, pers. 
comm.). This suggests that analyses for morphometric studies, such as evaluating the ratio of 
half-girth to fork length as an indicator of reproductive activity, should consider within-observer 
data checks to ensure that the measurements were taken consistently. 
 
Use of PIROP Data in Stock Assessments: Hawaii Longline Species Composition 
 
The PIROP catch data have been used to characterize the species composition of Hawaii longline 
catches. In this context, the PIROP data can be applied to conduct multivariate CPUE analyses 
and other community ecology-related analyses because the commercial logbook data, the other 
important monitoring tool for the Hawaii longline fishery, does not include entries for many 
bycatch species, and also because captains often treat the logbooks as landings reports, rather 
than full catch reports. As a result, species composition analyses can be more reliably conducted 
using the more comprehensive PIROP data. 
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Use of PIROP Data in Stock Assessments: International Stock Assessments  
 
The Hawaii longline fishery data collected by PIROP have been used in a number of recent stock 
assessments of highly migratory pelagics in the North Pacific Ocean. A considerable percentage 
of the stock assessment work conducted by the PIFSC, including the collaborative effort to 
complete the 2015 striped marlin stock assessment update, is performed in response to ongoing 
responsibilities to international scientific organizations (e.g., ISC Billfish Working Group). For 
example, in 2015, PIFSC contributed several working papers with information on the sizes of 
striped marlin catches, the size compositions of catches, and CPUE standardizations with time 
series for the Hawaii longline fishery to the ISC Billfish Working Group (Chang et al., 2015; 
Langseth, 2015; Walsh and Chang, 2015). These working papers were written to conform to 
guidelines from Brodziak and Dreyfus (2011) regarding the use of the best available scientific 
information for ISC stock assessments. In this context, the common purpose was to meet 
documentation responsibilities with transparency and scientific rigor.  
 
The international stock assessments also provide an opportunity for new assessment research 
using the PIROP data. In particular, the CPUE standardization analyses for the 2015 striped 
marlin assessment included mixed model (Langseth, 2015), fixed effect Poisson, and delta-
lognormal GLM approaches (Walsh and Chang, 2015). The mixed model analysis was a novel 
approach for standardizing CPUE while the Poisson and delta-lognormal models were updates 
from 2011 (Walsh and Lee, 2011). After considering the consistency of the CPUE 
standardization results across models, the Poisson GLM (Walsh and Chang, 2015) was chosen 
for inclusion in the stock assessment model for consistency with the previous assessment 
(Langseth, 2015). Nevertheless, these alternative analytical approaches highlight the ongoing 
work to improve CPUE standardization using the Hawaii longline data.  
 
Use of PIROP Data for Fishery Research: Peer Review Literature 
 
The PIFSC has published a number of papers in the peer-reviewed literature based on PIROP 
data. For example, Walsh and Kleiber (2001) used fishery observer data in regression tree and 
generalized additive model (GAM) analyses of blue shark Prionace glauca catch rates. Walsh et 
al. (2009) provided a quantitative description of observed shark catches in this longline fishery. 
Brodziak and Walsh (2013) used observer data to standardize CPUE for a bycatch species, the 
oceanic whitetip shark Carcharhinus longimanus. A zero-inflated negative binomial GLM 
(ZINB) was selected as the best-fitting standardization model, which indicated that the longline 
capture process was characterized by extra zeros (i.e., a greater frequency than expected under 
the Poisson or negative binomial counts distributions) and overdispersion in the positive catches. 
Walsh and Brodziak (2015) conducted similar analyses with incidentally caught billfishes; the 
ZINB was again found to be the best-fitting CPUE standardization model.  
 
The latter two papers (Brodziak and Walsh, 2013; Walsh and Brodziak, 2015) were 
characterized by inclusion of results in the text or appendices akin to those in the working papers 
(e.g., descriptive effort and catch statistics, analyses of deviance, residuals plots), albeit in 
abridged form. This demonstrated adherence to the practice of providing as much data as 
possible in readily comprehensible forms to support analyses, even in research papers published 
in prestigious fishery journals where publishing constraints require concise presentations. 
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The observer data have also been used to develop methods to correct commercial fishing 
logbooks, which serve as the principal monitoring tool in this fishery (Walsh et al., 2005; 2007).   
Walsh et al. (2002) used observer data to develop a method to correct logbook data for blue 
shark based on use of a GAM as a surrogate observer (Walsh and Kleiber, 2001), while Walsh et 
al. (2005; 2007) used observer data and public fish auction sales records to do so for blue marlin 
and other billfishes; these analyses are described in detail in the second section of this technical 
memorandum. 
 
This brief review documents multiple uses of the PIROP-reported fishery data by the SAP that 
have met the standards of peer-reviewed fishery journals. Such demonstrations of analytical rigor 
sufficient to the highest standards also reinforce confidence in working papers prepared in 
response to ongoing responsibilities because rigor is documented analogously in both contexts.  
 
Review and Summary 
 
This section has reviewed the use of PIROP data for stock assessments, including full data 
preparation procedures and CPUE standardizations with several statistical models. This has met 
our first objective, which was to ensure that PIROP data can be reproducibly prepared and that 
previous analytical work can be fully comprehended by using a reference document.  
We have also discussed analytical caveats, reporting practices, and adherence to principles of use 
of best available science. Much of this experience-based commentary has been presented to meet 
our second objective, which is to promote scientific rigor and transparency and to facilitate 
improved use of fishery observer data.  
 
Several aspects of PIROP data preparation could be improved by better R programming, and this 
should be seriously considered. Some procedures described herein are reproducible, but also 
highly inefficient from excessive caution. For example, data frame preparation can be performed 
by matching from data frames manually, but it would be more efficient to have a standard set of 
R scripts to perform the data preparation steps. If an automated routine could calculate catches 
from the appropriate fields (i.e., SPECIES_NAME, KEPT_RETURN_CODE) for required 
species, it would be very useful. This would greatly reduce data preparation work, and once 
verified, eliminate mistakes typical of lengthy repetitive tasks. If such a routine were then 
expanded to obtain the required operational variables, it would represent a major improvement 
compared to these procedures and might warrant recognition as an official SAP data preparation 
protocol.  
 
An analogous point can be made about improvements in analytical methodology. Walsh and 
Brodziak (2014) standardized swordfish CPUE from the shallow-set sector of this fishery during 
1995–2012, with a negative binomial GLM. The R library MASS and function glm.nb allow 
automation of the forward selection GLM fitting process for this distribution, which warrants 
evaluation for use with catch data reported as counts.  
 
In addition to striving for technical improvements, the SAP has sought to broaden the scope of 
CPUE analyses, as evidenced by investigations of several models and distributions in order to 
gain insight into the stochastic process of longline capture. CPUE standardizations using PIROP 
data have been published in scientific journals (Brodziak and Walsh, 2013; Walsh and Brodziak, 
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2015). This attests to the conceptual merit and rigor of the analyses. International reporting 
responsibilities have been met comparably, by submitting thorough but concise documents 
specifically intended to foster the principles of use of the best available science among stock 
assessment collaborators.  
 
Fishery management presently emphasizes predator-prey relationships, energy flows, habitat 
characteristics, and other aspects of ecosystems. In addition to information about catch rates, our 
ZINB analyses were also informative about the autecology of large oceanic pelagic fishes 
because results showed that SST acted as both a controlling factor governing metabolism and a 
directive factor influencing behavior of these species (Fry, 1971). Thus, the analyses yielded 
ecologically meaningful quantitative information about the effects of both extrinsic and intrinsic 
factors.    
 
Catch compilation for stock assessments is subject to careful review. If use of corrected catch 
histories and PIROP catch data is to continue, adequate personnel and support and appropriate 
species selection will be required. Potential ramifications of discrepancies in catch totals between 
uncorrected logbook data and corrected data should also be considered. 
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Section II. Evaluation and Application of Hawaii Longline Fishery Logbook Data 
 
 
This section reviews procedures used at the NOAA Fisheries Pacific Islands Fisheries Science 
Center (PIFSC) to evaluate, correct, and use catch data reported in mandatory fishing logbooks 
from the Hawaii-based pelagic longline fishery. Although methods are species-specific, all 
logbook data evaluation and correction procedures are based on data collected by the NOAA 
Fisheries Pacific Islands Region Observer Program (PIROP).  
 
The major studies of logbook reporting accuracy for this longline fishery (Walsh et al., 2002; 
2005; 2007) concentrated on blue shark Prionace glauca and istiophorid billfishes (blue marlin 
Makaira nigricans, striped marlin Kajikia audax, shortbill spearfish Tetrapturus angustirostris, 
sailfish Istiophorus platypterus, black marlin Istiompax indica). These studies were conducted by 
fitting generalized additive models (GAMs) to catch and operational data from the PIROP and 
then applying the GAM coefficients to an identical suite of predictor variables in the logbook 
data from unobserved fishing trips (i.e., operational variables) to predict catches. Linear 
regression techniques were used to identify outliers in the logbook data. Outliers in the catch data 
for blue shark and billfishes usually reflected non-reporting and species misidentifications, 
respectively. The major difference between these projects was the availability of public auction 
sales records to provide independent verification of the corrections applied to incidentally caught 
billfishes, whereas no such independent verification was available for bycatch species in this 
fishery, forcing reliance upon statistical inference. Although conducted for very different 
purposes, both studies demonstrated the feasibility of logbook correction based on use of 
statistical models fitted to fishery observer data for large oceanic pelagic fishes.  
 
This section reviews the methodology employed in these studies. Several brief discussions of 
various aspects of logbook data characteristics and use are also included. Appendix B presents 
detailed examples of several aspects of the logbook data methodology. 
 
Commercial vessels operating in the Hawaii-based pelagic longline fishery have been required to 
submit fishing logbooks summarizing daily effort and catch to the National Marine Fisheries 
Service (NMFS) in Honolulu since November 1990. The longline logbook program was initiated 
because the longline fishery was expanding rapidly during 1987˗1991, and because other 
problems (e.g., interactions between Hawaiian monk seals Monachus schauinslandi in the Main 
Hawaiian Islands EEZ) had been reported (Dollar and Yamamoto, 1991. The logbook program 
has served as the primary monitoring tool for this longline fishery throughout the ensuing 
quarter-century. The logbook form is a record for a single longline set that lists species-specific 
tallies of kept and released fishes, as well as interactions with protected seabirds, marine 
mammals, and sea turtles. The logbook database at the NOAA Fisheries Pacific Islands Fisheries 
Science Center now contains a 25-year record, representing more than 350,000 fishing-days. 
 
The logbooks have always been used to monitor catches of four groups of fishes: tunas,; 
billfishes; sharks, and other pelagic species (or miscellaneous species). This overall monitoring 
objective has been maintained since 1990, but the fishery has changed considerably during this 
period, necessitating changes in the logbook program, and the only detailed, published studies of 
logbook accuracy are not recent (Walsh et al., 2002; 2005; 2007). Thus, despite relative 
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constancy of purpose, little is known about the accuracy of the longline catch data in this fishery, 
and it cannot be assumed that levels of accuracy have remained constant over time.  
 
The first study of logbook accuracy (Walsh and Kleiber, 2001; Walsh et al., 2002) evaluated 
logbook reports of blue shark Prionace glauca catches from March 1994 through December 
1997. Large catches of this species (e.g., > 100 per set) were not uncommon during those years, 
particularly by vessels targeting swordfish Xiphias gladius in the North Pacific Transition Zone. 
Hence, in simplest terms, the project investigated the accuracy of logbook reports of non-target 
catches that were sometimes so high as to suggest that enumeration could be inherently difficult, 
with the objective of identifying sources and estimating the magnitude of reporting bias. 
 
The second project (Walsh et al., 2005; 2007) investigated logbook reporting patterns with 
billfishes (Family Istiophoridae). The impetus was that species misidentifications caused by 
superficial similarities, especially striped marlin Kajikia audax reported as blue marlin Makaira 
nigricans and blue reported as black marlin Istiompax indica, were known to be present in the 
logbook data, but the sources and magnitude of this reporting bias were not known. 
 
The PIROP observer data are invaluable for direct comparison and modeling purposes, but an 
additional important source of information, public fish auction sales records in electronic format, 
has been provided by the Hawaii Division of Aquatic Resources (HDAR) to the PIFSC since 
January 2000. These three independent sources of information (logbook and observer reports; 
auction sales records), coupled with the centralized location of this longline fleet, combine to 
form virtually optimal monitoring circumstances (Walsh et al., 2005; 2007). 
 
In this section, we review methodology used to prepare logbook data for analysis, identify biases 
and inaccuracies, and perform logbook corrections (Walsh et al., 2002; 2005; 2007). We also 
discuss the importance of fish auction sales records for independent verification of the 
corrections applied to logbook data. This section extends the first, which dealt strictly with uses 
of fishery observer data by describing combined uses of observer and logbook data and uses of 
observer, logbook, and fish auction sales data.  
 
Background Information 
 
Overview of catch reporting patterns 
The catch data from the Hawaii-based longline fishery are characterized by several patterns. 
Table 3 presents catch data in a comparative format, with mean numbers of caught, kept, and 
released fish as reported by PIROP observers, in logbooks on the observed trips (i.e., paired 
observations), and in logbooks from unobserved fishing trips, to summarize these patterns. An 
important point to consider when comparing the data from the three sources is that most 
unobserved shallow-set activity occurred before 2000.  
 
The usual pattern for logbook reporting is that the mean numbers of caught and released fish 
reported by fishery observers exceed those from the logbooks on observed trips, which in turn 
exceed those from unobserved fishing trips (Walsh, 2000). This usually reflects higher 
percentages of zero catches and lower numbers of released fish reported in the logbooks, even 
with an observer present, as exemplified by swordfish and bigeye tuna, primary targets in the 
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shallow- and deep-set sectors, respectively. Blue shark, a bycatch species in the deep-set sector, 
exhibits substantial differences in catch data conforming to this pattern.  
 
The percentages of the target and incidentally caught teleost species retained for sale in this 
fishery are very high in most cases. The higher percentages of zeros in the logbooks cause 
inflation of the apparent retention rates, but most differences are negligible (i.e., a few 
percentage points). The two obvious exceptions to this pattern are swordfish and albacore, the 
primary target in the shallow- and a secondary target in the deep-set sectors, respectively. The 
reason for these deviations is that each is incidentally caught in the other sector, and substantial 
discarding may occur as a result. This demonstrates the importance of the status of the species 
within the sector relative to the disposition of the catch. In contrast to the teleosts, the 
percentages of retained sharks were much lower, at 0.03% and 0.2% for blue shark in the 
shallow- and deep-set sectors, respectively, calculated from the observer data. Makos have the 
highest retention rates for sharks, at 28.8% and 11.7% in the deep- and shallow-set sectors, 
respectively. Threshers are also retained, at 9.1% and 5.5% in the deep- and shallow-set sectors, 
respectively.  
 
Reporting of finned sharks is another complexity in the data comparison. When shark finning 
was legal (i.e., before 2000), large fractions of the sharks caught were finned (24% to 42% per 
year for blue shark during 1996˗1999 in the shallow-set sector), but this is no longer the case. 
Although the effect of finning will decrease in importance as data are accumulated, it will remain 
important for any specific calculations made during the years when the practice was widespread. 
The most readily comprehensible comparison of the billfishes data is that between the observer 
reports and logbooks from observed trips. The blue marlin data reflect over-reporting, which 
represents bias caused by species misidentifications. This is a fundamentally different matter 
from under- or non-reporting. 
 
In general, the logbook reports list fewer species and are often negatively biased because fewer 
released fish and greater percentages of zero catches are listed than in the observer data. As such, 
the logbook reports are more nearly akin to landings reports than catch reports. 
 
Logbook forms  
Several versions of longline logbook forms have been used since November 1990. Major 
revisions included additions and deletions of entry positions for fishes, addition and subsequent 
deletion of an entry position for shark fins, rearrangements of the monitored fish groups, and 
additions of many operational details.  
 
The original version, used through 1994, was arranged with billfishes and tunas as the top and 
bottom sections, respectively. The billfishes section included five entry positions, including one 
for black marlin Istiompax indica. The kept and released fishes were recorded as tallies; total 
numbers of kept and released fishes were recorded as numerals.  
 
A form introduced in 1995, was characterized by additional operational information relative to 
the original version, including increased information about positions and an entry for the number 
of hooks per float. Also, separate entry positions were added for finned, retained, and released 
sharks; previous versions had only included entry positions for kept and released sharks.  
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The form was again revised during 1997, by initiating use of the six-digit logbook page serial 
number as a unique set identifier. Alternating white and stippled entry positions were added, 
creating contrast to make the form easier to read. This six-digit logbook page serial number was 
fully in use by 1998. 
 
The logbook form used from 2001–2004 was extensively modified from the previous version 
because litigation necessitated changes in the management of this fishery. Swordfish-targeted 
activity was curtailed so the tunas section was shifted to the top of the form. The black marlin 
entry position was removed from the billfishes section, which had the intended effect of 
requiring an entry for “Other Marlin” to report a black marlin. Entry positions for several bird 
mitigation measures and oceanic whitetip shark Carcharhinus longimanus were also added. 
The logbook form introduced during 2004 remains in use. It differs from the previous version 
primarily by having had the entry positions for bird mitigation techniques removed. 
 
The remainder of this section presents background information pertaining to the groups of 
monitored fishes listed on the logbook form. The order of presentation (sharks, billfishes, tunas, 
and other pelagic species) primarily reflects accrued experience working with data from these 
species rather than economic value or ecological importance in this fishery. 
 
Shark catches and reporting 
The blue shark study (Walsh et al., 2002) was described as being, in simplest terms, an 
assessment of logbook accuracy when non-target catches are large. In reality, the 1994–1997           
study entailed evaluation of the accuracy of logbook data from a fishery considerably different 
from that now in existence. Because shark finning was legal, blue (and most other) sharks 
represented incidental catches, with economic value attributable to fins sales. Consequently, 
logbook reports often included entries for finned sharks, providing some information about 
removals. 
 
The expectation regarding the logbooks was that blue shark catches and removals in this longline 
fishery would be greater than the reported total. Results supported this expectation; the estimated 
under-reporting rate for the study period was 23.9% (Walsh et al., 2002).  
 
The largest blue shark catches were consistently taken on longline sets targeting swordfish. This 
type of fishing effort, however, was associated with unacceptably high rates of interactions with 
protected sea turtles, which led to a closure of swordfish-targeted fishing from early in 2001 until 
April 2004 (Walsh et al., 2009). The fishery then re-opened under a two-sector management 
regime based upon the target fishing depth of longline gear (Department of Commerce, 2004).  
 
The operational parameter used to define fishery sectors is the number of hooks per longline 
float. “Shallow” and “deep” sets use <15 and ≥15 hooks per float, respectively. Because a hooks-
per-float field was first added to the logbook form in 1995, any attempt at retrospective two-
sector analysis of data from 1990–1994 must be predicated upon imputation or inference, 
presumably based upon PIROP data or within-vessel fishing patterns verified during later years.  
The two-sector management regime has required fishery observer coverage on all shallow-set 
trips (i.e., swordfish-targeted fishing) since April 2004. The usual target in the deep-set sector is 
bigeye tuna Thunnus obesus, and the annual observer coverage rate has remained near 20% since 
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2004. Fleet-wide coverage rates during the first decade of PIROP operations were presented by 
Walsh et al. (2005).  
 
A second major management change affecting sharks in this fishery was the prohibition of shark 
finning in 2000, by the US Shark Finning Prohibition Act and Hawai‛i Revised Statute 188-40.5, 
followed by passage in 2010 of a Hawai‛i state law banning possession of shark fins. These laws 
caused most sharks taken by this fleet to become bycatch without economic value. Lacking such 
value, post-capture release of sharks would be expected, but the change in economic status 
introduces uncertainty into estimation of released sharks. Figure 2 presents a comparison of 
logbook- and observer-reported blue shark catches during 1995–2014; the annual median 
difference was 8.5%.  
 
Independent of the direct effects of the finning prohibition, the two-sector management regime 
led to reductions in observed shark catches and mortality and altered species composition of the 
shark catches (Walsh et al., 2009). The expansion of deep-set effort was associated with 
increased catches of some relatively deep-dwelling sharks, such as bigeye thresher Alopias 
superciliosus. In the shallow-set sector, shortfin mako Isurus oxyrinchus was the only species 
with a large increase in catch rates after the reopening (Walsh et al., 2009), which reflected 
increased effort northeast of Hawai‛i (ca. 30°–35°N, 140°–145°W). 
 
Southward expansion of deep-set effort, extending to near-equatorial waters, under two-sector 
management revealed an additional source of logbook reporting bias. Direct comparisons of 
logbook and observer data from tropical locales where oceanic whitetip sharks Carcharhinus 
longimanus and silky sharks C. falciformis would be expected to predominate among requiem 
sharks (Compagno, 1988; Bonfil et al., 2008) demonstrated that some captains invariably logged 
all sharks as blue sharks, regardless of species (Walsh, unpublished data). The total shark catches 
were roughly correct, but the species differences either went unnoticed or unrecorded. Thus, 
misidentifications of carcharhinid sharks as blue sharks apparently increased the accuracy of the 
estimates of blue shark catches in near-equatorial waters because the positive bias associated 
with misidentified catches of silky and oceanic whitetip sharks countervailed the negative bias 
associated with some under-reporting. This also means, however, that logbook data for tropical 
carcharhinids would be negatively biased by under-reporting and misidentifications. 
 
Another known source of inaccuracy in shark data in logbook reports is due to revisions in the 
logbook form. In 2001, one such change in the logbook form was addition of an entry position 
for oceanic whitetip shark Carcharhinus longimanus. Figure 3 compares mean oceanic whitetip 
shark catches from logbooks and corresponding observer records during 2000–2014; the 
important feature is that five years elapsed after the logbook revision before the trends 
converged. Hence, an entry position may be present on the logbook form, but this does not 
necessarily imply its prompt adoption or correct use.  
 
We also note that some logbook reporting errors have been definitively identified and estimated. 
Double-counting (i.e., reporting a shark catch twice) sometimes resulted from sharks being listed 
as both “Finned” and “Released” (for example, see Walsh et al., 2002; Figure 1). 
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The comparison of logbook reports and PIROP observer data for blue shark catches on observed 
trips during 1995–2014 (Fig. 2) showed that the observer-reported catches were consistently 
greater than those reported in logbooks, with an annual median difference of 8.5% per trip. The 
apparent difference reached its highest levels in 2000–2001, during the expansion of the PIROP, 
but decreased in 2002, after fleet-wide observer coverage rates stabilized at about 20% of trips 
being observed. The ongoing pattern of under-reporting of blue shark catches in the observed 
logbook records suggests that unobserved trips may exhibit similar biases. 
 
The increases in observer coverage can be expected to affect logbook data correction positively 
because analysis of catch data for sharks in the shallow-set sector can now rely upon direct 
comparisons with observer reports, and preparation of corrected catch histories could entail 
simple substitutions. In the deep-set sector, the annual sample sizes available to model catches 
and evaluate data accuracy are much larger than in 1995–1999.  
 
Although estimation of shark catches and other fishery-related effects in this longline fishery is 
complex, an important consideration regarding logbook accuracy evaluation for sharks is that 
some makos (Isurus spp.) and threshers (Alopias spp.) are sold at auction in Hawai‛i, with sales 
records available for verification purposes. These sharks are also highly distinctive in 
appearance. Hence, it is reasonable to assume that catches of these species could be reported 
accurately and represent positive controls, with the connotation that these species should be 
reported as least as accurately as all other sharks.  
 
There are obvious potentially serious complications in this scenario. Bigeye threshers are 
sometimes taken in relatively high numbers in this fishery; i.e., 1.3% of the observed sets during 
1995–2014, with positive catches of bigeye threshers yielded ≥15 (Walsh, unpublished data). 
Thus, it could be useful to determine whether bigeye threshers are ever reported as blue sharks, 
as with oceanic whitetip and silky sharks, and whether bigeye thresher catch sizes are ever so 
large as to cause enumeration to be inherently difficult, as with blue sharks. Analogously, 
shortfin makos and blue sharks are very dissimilar in appearance, and the former can be 
extremely dangerous, but they are the two shark species taken regularly by the shallow-set sector 
in temperate waters. Logbooks could be compared to observer reports and auction sales records 
to determine whether shortfin makos are reported as blue sharks.  
 
Billfish catches and reporting  
This fishery takes species from both families of billfishes. Swordfish Xiphias gladius, monotypic 
in the Family Xiphiidae, is the target in the shallow-set sector and is taken incidentally in the 
deep-set sector. Istiophorid billfishes are primarily taken incidentally in the deep-set sector. 
One of the major management challenges with istiophorid billfishes in this fishery is logbook 
data accuracy in the context of fishery monitoring. Morphological similarities among these 
species (Figure 4) cause self-reporting biases attributable to species misidentifications (Figure 51) 
that affect the means, standard deviations, or both parameters of the catch data.  
 
A management action with very positive effects regarding the species misidentifications problem 
was instituted on January 1, 2000, when the Hawai‛i Division of Aquatic Resources (HDAR) 
                                                           
1 Figure 5 is taken from Walsh & Bigelow: “Where the Billfishes Were (and Were Not).” Presentation to the 56th 
International Conference, Lake Arrowhead, CA, May 2005. 
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began providing complete public fish auction records in electronic form to the PIFSC. During 
1990−2000, NMFS Honolulu Laboratory monitoring staff maintained roughly a one-third 
coverage rate (i.e., two days per week) at the main fish auction in Honolulu. Additional records 
were available in HDAR trip reports, but such records were incomplete and if available were 
often confusing. The electronic sales data now permit efficient, convenient checks on logbook 
catch data, particularly species misidentifications. 
 
This species misidentifications problem warrants careful consideration because both blue and 
striped marlins are managed as Highly Migratory Species. In addition, stock assessments for 
both are conducted under the aegis of the Billfish Working Group of the International Scientific 
Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC BILLWG). The 
concern is that catch data inputs to stock assessments are biased by misidentifications. 
 
Logbook data accuracy for billfishes was evaluated for a 10-year period, starting at the founding 
of the PIROP during 1994 (Walsh et al., 2005; 2007). Catch data correction was not attempted 
for the period between the outset of the logbook program (November 1990) and the founding of 
the PIROP (March 1994) because comparison standards were not available.  
 
Questionable species identifications with billfishes or other species in the shallow-set sector need 
not be problematic for future stock assessment purposes. Direct comparisons of observer and 
logbook reports have been possible since 2004, and auction records have been available for 
verification purposes since 2000. Verification of the accuracy of catch data could be 
straightforward. Evaluation of logbook data accuracy for billfishes taken by the deep-set sector 
could also be relatively straightforward for stock assessment purposes, at least from a procedural 
standpoint, with reliance upon established methods. 
 
The possibility of a future solution to the problem of billfish misidentifications has not solved the 
problem of bias from species misidentifications in the past. As a result of partial auction 
coverage and incomplete HDAR information before 2000, substantial numbers of apparent 
outliers that probably represented species misidentifications could not be investigated. This 
means that the logbook database retains considerable bias for billfishes through 1999. 
 
This situation reflects the decision to require strong statistical evidence and verification to 
correct logbook data for billfishes. Given the clarity of the results, with substantial numbers of 
corrections despite rigorous standards (Walsh et al., 2005; 2007), it may now be appropriate to 
utilize circumstantial evidence in estimation of catches for stock assessments in order to re-
evaluate the accuracy of the 1990–1999 logbook data for billfishes. A particularly notable 
example is that of blue marlin during 1997, when very large numbers were caught. It was the 
only year when most of the seemingly high billfish catches, identified as possible large positive 
outliers, were verified as blue marlin and not striped marlin misidentified as blue marlin.  
 
Because the sales records were incomplete, many of the large logbook-reported catches could not 
be verified. The actual catch may have been considerably greater than the reported total, with the 
discrepancy caused by discarding and undercounting.  
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Tuna catches and reporting 
Logbook data accuracy has not been investigated in detail for the five tunas taken by this fishery. 
Four are true tunas (bigeye tuna Thunnus obesus, albacore T. alalunga, yellowfin tuna T. 
albacares, Pacific bluefin tuna T. orientalis); the more primitive skipjack tuna Katsuwonus 
pelamis is also taken. These fishes can be loosely described as common to abundant (bigeye 
tuna, yellowfin tuna, albacore), uncommon (skipjack), and rare (Pacific bluefin tuna) in the catch 
of this fishery.  
 
Walsh (2000) compared fishery observer, logbook, and auction sales data for these species from 
230 observed fishing trips. The linear regressions of the logbook catches (Y) on the observer-
reported catches (X) were: 
 
Y = 0.070+0.941X (bigeye tuna) with a 95% CI for slope of (0.932, 0.950) 
Y = 0.009+0.917X (yellowfin tuna) with a 95% CI for slope of (0.908, 0.927) 
Y = 0.015+0.767X (skipjack tuna) with a 95% CI for slope of (0.755, 0.779) 
 
The regression coefficients for bigeye and yellowfin tunas approached 1, reflecting generally 
close agreement between the logbook- and observer-reported catches, but the 95% confidence 
intervals for the regression slope coefficients did not include 1. The much lower regression 
coefficient for skipjack reflects its smaller size and lower value compared to the other tunas.  
 
A detailed evaluation of the accuracy of logbook reporting of bigeye tuna catches could be useful 
for at least two important reasons. Because bigeye tuna is the main target species in this fishery, 
the total of data entry errors, misidentifications as congeners, and other errors could be perceived 
as minimum logbook reporting inaccuracy. In addition, it would be interesting to evaluate the 
incidental catches of bigeye tuna in the shallow-set sector (Walsh and Brodziak, 2015) to 
determine whether the target species and fishery sector affect logbook data accuracy for a 
different high-value species.  
 
The accuracy of yellowfin tuna logbook data would be of interest because it was formerly a 
target species in this fishery, but this has not generally been the case in recent years. If yellowfin 
tuna data accuracy has decreased, it would support the generalization that data accuracy might be 
affected by a change in status from a targeted- to an incidentally caught species.   
 
Mixed catches of small bigeye and yellowfin tunas are sometimes taken on trips to tropical 
waters near the US territories in the Line Islands. It would be useful to check these logbook 
reports against available sales records because both species are valuable, but juvenile bigeye and 
yellowfin tuna often look very similar and can be difficult to separate by species (Itano, 1992).  
 
Other pelagic species catches and reporting  
Logbook data accuracy has not been investigated in detail for other incidentally caught pelagic 
species monitored in this fishery (e.g., dolphinfish (mahimahi) Coryphaena hippurus, opah, 
Lampris guttatus, and wahoo, Acanthocybium solandri). Walsh (2000) compared fishery 
observer, logbook, and auction sales data for the species listed in the “Other Pelagics” section of 
the logbook form (originally termed “Miscellaneous”) during 230 observed fishing trips. The 
rates of exact agreement between logbook- and observer-reported catches of opah and wahoo 
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were 96% and 91%, respectively. These results were not surprising because both species are 
economically valuable, caught in low numbers, and distinctive in appearance, whereas the exact 
agreement rate for dolphinfish was 66%, reflecting lower value and possible counting difficulty. 
Ongoing evaluation of logbook data accuracy for opah and wahoo could be straightforward, 
particularly since 2000, by using the electronic sales information. Although these species are 
primarily taken in the deep-set sector, the observer sample sizes are now sufficiently large to 
identify sources of reporting bias (e.g., non-reporting of discards). 
 
Evaluation of logbook data accuracy for dolphinfish, in contrast, would probably be difficult. 
Retention rates are likely to vary inversely with catch sizes, and any possibilities of spoilage or 
use of hold space intended for bigeye tuna during the remainder of the trip would also be 
expected to increase discarding. 
 
It is possible that additional information could be inferred about logbook accuracy for other 
incidentally caught pelagic species. The logbook form revision in 1995 included additions of 
entry positions for oilfish Ruvettus pretiosus and pomfrets (Family Bramidae). Since 1995, 
comparison of logbook data for these species to observer data, auction records, or both should 
prove informative about captains who do (or do not) identify catches accurately. Moreover, it 
seems reasonable to expect that captains who report oilfish and pomfrets accurately also report 
other species taken incidentally and in low numbers (e.g., escolar Lepidocybium flavobrunneum, 
great barracuda Sphyraena barracuda) with similar accuracy. 
 
Methodological Overview 
 
Premise underlying commercial longline logbook correction 
Logbook data correction at the PIFSC is based upon use of catch and operational data collected 
by PIROP fishery observers according to standard protocols (Pacific Islands Region Office, 
2014). The observer information is considered a research quality database suitable for use as a 
comparison standard for the logbooks. Inferences about accuracy can be drawn by comparing 
logbook reports to observer data directly or by comparing logbook reports to predictions 
generated by statistical models fitted to observer data. 
 
Evaluation of logbook data accuracy 
Many aspects of logbook data preparation and analysis are conducted in a hierarchical manner, 
reflecting the availability of mutually complementary sources of information (i.e., logbooks, 
observer reports, sales records). In the shallow-set sector, direct comparisons of logbook data and 
fishery observer reports have been possible since 2004, as a result of 100% observer coverage.  
Evaluation of the accuracy of logbook data from unobserved fishing trips is much more difficult 
than direct comparisons of logbooks and fishery observer reports. It is, however, indispensable to 
development of corrected catch histories for large oceanic pelagic fishes. The premise underlying 
correction of logbook data from unobserved fishing trips is that catch and operational data 
collected by the PIROP can be used to fit statistical models to predict catches, thereby serving as 
“surrogate observers” on unobserved fishing trips (Walsh et al., 2002).  
 
Walsh and Kleiber (2001) fitted regression tree and generalized additive models of blue shark 
catch rates using several operational variables (e.g., latitude, longitude, SST, date) as the 
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predictors. Walsh et al. (2002) then applied the coefficients from a GAM to an identical suite of 
predictors in logbook reports and compared the reported to the predicted catches by linear 
regression, using an objective statistical criterion, the studentized residuals (SR), to identify 
outliers. However, these checks concentrated on reports of zero catches (i.e., non-reporting) and 
did not investigate under-reporting (i.e., positive, inaccurate reporting). A similar approach was 
used in the billfishes study (Walsh et al., 2005; 2007), except that fish auction sales records were 
also used to verify the corrections applied to logbook data.   
 
In several logbook data studies with blue shark and billfishes (Walsh et al., 2002; 2005; 2007), 
strong evidence of inaccuracy was required (e.g., two sets per trip with SR>|2| or one set with 
SR>|3|) to consider data correction. As such, this methodology has clearly been shown to be 
applicable in evaluation of logbook data accuracy.  
 
The purpose of this section is to ensure that completed and ongoing work with logbook data is 
fully comprehensible. To that end, preparation of logbook data files in R format is summarized, 
an integrated analytical structure utilizing the logbooks, fishery observer data, and auction 
records is described, and uses of statistical models and linear regression techniques in data 
correction are reviewed. Caveats about various procedures are emphasized.  
 
The information in this section is expected to prove useful for at least three major reasons. First, 
the review of methodology provides a reference for logbook data use. Second, the logbook data 
archive primarily includes results from commercial longline sets, but there are also data from 
experimental fishing trips and others that began or ended outside Hawai‛i, which should facilitate 
recognition that catch inputs to stock assessments should include all removals in both the PIROP 
and logbook archives, including experimental catches and those of far-ranging vessels. In 
contrast, statistical model fitting procedures are only conducted with commercial longline data 
reported by the PIROP, and logbook correction is analogously restricted to data from unobserved 
commercial fishing. Third, the procedures used to calculate catch inputs to stock assessments are 
not intuitively obvious because the catch totals are sums of catches reported by fishery 
observers,in logbooks, and possibly estimates. These calculations are explained in full. 
 
This overview covers five topics: preparation of logbook data for analysis in an R data frame 
format; direct comparisons of observer and logbook data; prediction from a statistical model and 
regression analyses in logbook data correction; use of public fish auction records in verification 
of logbook data correction; and archival of past results. As in Section 1, ORACLE schemas and 
tables and R functions are in boldface to facilitate recognition of technique-related specifics. 
 
Preparation of longline logbook data as an R data frame 
The longline logbook data are obtained from three files in the PIFSC ORACLE data base, in the 
schemas “OPDT”: LOG_HEADER; LOG_DETAIL; LOG_VIEW. Several important fields 
used in preparation are described in Table 4; Figure 6 presents a general illustration of logbook 
data preparation and use. Data preparation is presented in detail in Appendix B, with several 
aspects described in complete examples. The following comments pertain to those examples. 
The command sequence to import logbook data from ORACLE (Example A 1) is also used with 
PIROP data (Example A 1). To work properly, every command in this import sequence must be 
exactly correct (e.g., spaces must precede and follow the asterisk in the select command).  
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Preparation of the logbook data as a flat file (Logsdata) to serve as an analytical data frame in 
which the columns are fields and the rows are observations, is presented in Example A 2 (DF 
denotes “data frame”). The initial step entails using the LOG_HEADER file to create the proper 
dimensions. About 35 fields can provide necessary operational information usable without 
revision (e.g., haul dates, numbers of hooks deployed, target species, and permit number). 
 
Additional steps require manipulations of these fields to create character variables, such as set 
identifiers, and factor variables to define levels of predictors in generalized linear models. 
Catch information is obtained from the LOG_DETAIL table, tabulated by sets, and matched to 
operational information in the data frame. The tabulation is performed by counting the listings of 
any species per set; i.e., catch<-tapply(DF$SPECIES_NAME,DF$unique_set_ID,length), 
where catch refers to the number of records for kept and released fish of any species per set, 
SPECIES_NAME refers to a species on the logbook form, unique_set_ID refers to the unique 
set identifier used for the aggregation, and length is the function that counts records.  
 
The unique set identifier (unique_set_ID) is prepared from three fields with the paste function: 
(paste(LOG_DETAIL$_LAND_YR, LOG_DETAIL$TRIP_NUM, 
LOG_DETAIL$SERIALNUM) ). Thus, the first set of Trip 1646 in 1991 would be uniquely 
identified by "1991 1646 1". Beginning in 1997, the logbook page serial number (Logpage) has 
become the unique identifier. Therefore, the SERIALNUM field has been the logbook page 
serial number. A second unique identifier (unique_set_ID1) is also in the data frame, differing 
only in use of the original value of SERIALNUM rather than the logbook page serial number.  
Separate linking fields are prepared in both the logbook and observer data frames to permit direct 
paired comparisons for the observed longline sets. In other words, two fields are required in each 
data frame corresponding to the years through 1997, and from 1998, when the logbook serial 
number was adopted as the unique set identifier.  
 
Preparation of the unique set identifiers (i.e., Observer$Logpage, Logsdata$Logpage) allows 
matching the corresponding fields from the two data frames. Thus, logbook accuracy for any 
species would usually be assessed by matching the logbook-reported value for catch on observed 
sets to the corresponding sets in the observer data frame and then seeking systematic differences 
to be investigated as sources of bias (e.g., underreporting, misidentifications). It is necessary that 
the linking fields in both data frames be of the same mode (i.e., character; factor; numeric). If 
they are not, this procedure will fail.   
 
The large majority of the fields in the three data frames imported from ORACLE are not needed 
for logbook data analyses. As a result, learning the characteristics of the fields needed for 
analyses and associated calculations or revisions (e.g., reducing a character string with the substr 
function) are major challenges in logbook data preparation.  
 
During preparation of the analytical data frame, summary (i.e., summary(DF$variable)) 
becomes a very useful function. It returns several descriptive statistics, including the maximum 
and the number of missing values for numerical variables (i.e. NA). Checks on maxima are 
useful because likely errors (e.g., two tally marks logged as 11 or three as 111) and necessary 
truncations (i.e., wider ranges of variables in logbooks than in observer data sets) may be 
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revealed. This function can also be usefully applied (summary (DF)) in order to prepare a data 
frame with no missing values or to check that its dimensions are correct.  
 
The table function is useful for characterizing the frequencies of character and factor variables; it 
returns the number of times that some categorical or character variable is present in a data frame. 
For stock assessment purposes, this is useful when considering set-type effects. It is helpful after 
invoking the table command to use the unique command (i.e., unique(DF$Set_type)) because 
the return will state whether NA values are present; if so, the number of missing values would be 
the difference between the total number of sets and the sum of the values returned by table.  
The unique function is useful after selecting a species for inclusion in the data frame. The 
SPECIES_NAME field can be NA so a check should be performed by using a subset of the data 
frame:DF1<-DF[DF$SPECIES_NAME==species&(!(DF$SPECIES_NAME==”NA”)),]. In 
words, this means that a data frame (DF1) selected from the original (DF) will include all 
records for a particular species, but it will exclude records missing the SPECIES_NAME value 
because the exclamation point represents negation. 
 
After preparing the analytical data frame, it is often convenient to prepare new data frames for 
analyses known or expected to be required. For example, data for a deep-dwelling species could 
be selected as Logs_DS<-Logsdata[Logsdata$Set_type==”D”,], where Logs_DS would refer 
to a data frame containing deep-set sector logbook data, Logsdata would refer to the entire 
analytical logbook data frame, and Set_type==”D” specifies the deep-set sector as the selection 
criterion. 
 
Information pertaining to the SST matcher program (see Section 1) at the PIFSC and the 
necessary preparations are presented in Example A 3. Interested persons are referred to R. Price 
of the PIFSC IT and M. Abecassis of the PIFSC CoastWatch groups, respectively.  
The remaining aspect of logbook data preparation entails several truncations (Example A 4). 
These steps limit the application data to particular types of effort in particular locales (i.e., 
Hawai’i-based commercial longline fishing) and result in the elimination of large numbers of 
missing values from various fields.   
 
Comparisons of observer and logbook data 
Direct comparisons of logbook and PIROP observer data are conceptually straightforward. Since 
1998, the simplest method is to match the logbook data to the observer data frame using the 
identical unique set identifier present in both data frames. The corresponding observer and 
logbook values can then be plotted and any calculation(s) performed easily. For example, the 
sequence Observer1<-Observer[Observer$species = Observer$species.log + 10,] could be 
used to check for discrepancies between the two data sources. The sequence selects longline sets 
in the observer data frame (Observer) with an observed catch (Observer$species) equal to the 
logbook catch plus 10 (Observer$species.log) and saves these in a new data frame Observer1.  
The data matching process for earlier years (i.e., 1994˗1997) is more complicated. The fields 
available for use require careful revisions. Specifically, the logbook data (LOGHDR) include 
fields named OBSTRIPNUM and OBSSETNUM. These fields would be combined by using 
the paste function with no separator (i.e., Logsdata$Link_95_97<-
paste(Logsdata$OBSTRIPNUM, Logsdata$OBSSETNUM, sep=””). This new field could 
then be redefined as NA for the other years with the ifelse function (i.e., 



 

26 
  

Logsdata$Link_95_97<- ifelse(Logsdata$Haulyr<1995 | Logsdata$Haulyr>1997, 
”NA”,Logsdata$Link_95_97) to restrict matching to this period.  
 
Data on the number of caught and released fishes in the shallow-set sector since 2004 can be 
obtained directly from the observer-reported values. Bias in logbook data associated with non-
reporting of released fishes in the logbooks can be estimated directly by subtracting the logbook 
values from the corresponding observer values. In the deep-set sector, data accuracy evaluation 
for the unobserved sets (ca. 80%) is conducted by comparing logbook-reported catches to 
predictions from a statistical model fitted to PIROP observer data (Walsh et al., 2002; 2005; 
2007).  
 
Use of statistical models to predict catches 
The coefficients from a statistical model can be applied to logbook data using the R predict 
function to serve as a comparison standard for unobserved fishing trips (Walsh and Kleiber, 
2001; Walsh et al., 2002). It is critically important at this step that the ranges of the predictors in 
the data set used to fit the model should equal or preferably exceed those in the application data 
set. For this reason, some truncations of the logbook data are usually required. Sets with missing 
covariate values are also deleted. In practice, the truncations and deletions usually comprise a 
small fraction of the logbook data (ca. 2%). Catch data from these sets are accepted as accurate. 
In practice, the truncations should not approach the maxima; e.g., if the latitudinal range in the 
observer data (i.e., model-fitting set) was 0°˗42°N, the logbook data might be truncated to 
2°N˗40°N. For billfishes, particularly the tropical blue marlin, SST exerts strong effects on catch 
rates (Walsh and Brodziak 2015; Walsh et al. 2005; 2007); therefore, if the SST range in the 
observer data was 17°˗32°C, the logbook data might be truncated to 18°˗30°C. Because SST and 
latitude are inversely related, both low latitude and high SST values would be associated with 
relatively high blue marlin catch rates. The reason for careful truncations is that applying model 
coefficients to logbook data that include covariate values beyond the ranges of the model fitting 
data can cause very large prediction errors when predictions are back-transformed.  
 
An example of the use of a statistical model for logbook data correction (Appendix B: Example 
B 1) is presented, based upon fitting a zero-inflated negative binomial model (ZINB), which 
requires the R libraries pscl and MASS, to the PIROP observer data from 1995˗2014. The ZINB 
is appropriate for data reported as counts, with more zeros than expected under the Poisson or 
negative binomial distributions and with overdispersion in the positive counts (Zuur et al., 2012; 
Brodziak and Walsh, 2013).  
 
An important point regarding the models used to correct logbook data (Walsh et al., 2002; 2005; 
2007) is that they are less complex than other models recently used to standardize CPUE of 
highly migratory fishes (Brodziak and Walsh, 2013; Walsh et al., 2015; Carvalho et al., 2016). 
This is because the logbook data do not include several operational parameters that are in the 
observer data. For example, the best fitting model for blue marlin (Walsh and Brodziak, 2015) 
computed with PIROP observer data included six factors, three continuous variables, and four 
interactions, but two factors and an interaction cannot be estimated from the logbook data. For 
this reason, a ZINB with four factors, two continuous variables, and two interactions in its 
negative binomial model and two continuous variables in the zero-inflation model was fitted for 
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data evaluation. In addition, the historical changes in the operational details on the logbook form 
necessitate more imputation of operational variables than is required with observer data.  
 
The sample sizes in the logbook data set are much greater than the observer data set so the ranges 
of operational variables are also generally greater. This disparity represents a second constraint 
on use of a statistical model for data correction because the procedures require prediction, and 
doing so outside the ranges in the model-fitting data set can cause very large errors. 
 
The fitting methods followed Section 1; the analysis of deviance and other summary details are 
presented in Appendix II, Example B 1. The example also shows the effect of the presence of 
bias (i.e., systematic misidentifications) in the model fitting data.  
 
The basic syntax used is predict(Obsr_model, type=”response”, newdata=”Logsdata”), 
where Obsr_model is the GLM (or GAM) object fitted to observer data, type=”response” is the 
call for the back-transform to the original units, and newdata=”Logsdata” specifies use of the 
data frame for prediction.  
 
Applying the coefficients from a ZINB or other statistical model to the logbook data generates a 
vector of predicted catches. For convenience, this vector can be assigned to the data frame of 
interest (e.g., Logsdata$predicted). This facilitates regression analysis of the reported on 
predicted values, which entails computing the linear regression of the reported on the predicted 
values using the lm function: lm(log(Logsdata$reported)<-log(Logsdata$predicted)). The 
studentized residuals (Draper and Smith 1998) are then obtained by dividing each residual by its 
standard error. 
 
The subset of observations with large SR can then be selected with Large_SR<-
Logsdata[Logsdata$SR<=-2 | Logsdata$SR>=2,] where Large_SR would be a new data frame 
containing all longline sets with |SR|≥2. Because the large SR data are selected in approximation 
to the t-distribution, |SR| values of 2.0, 2.6, and 3.3 would correspond roughly to the 0.05, 0.01, 
and 0.001 probability values. 
 
After obtaining the large SR data, it is useful to obtain a tabulation because logbook data bias 
tends to be concentrated among a few vessels or captains, although the sources of bias vary 
among species. The command table(Large_SR$Permit) would return a table from the 
Large_SR data frame showing the number of records per vessel. A vessel with 100 or more sets 
with large SR might be a source of substantial inaccuracy in the catch data. A more detailed and 
meaningful tabulation would take into account movements within the fleet during captains’ 
careers by using table(Large_SR$Permit, Large_SR$CML). This command would return the 
number of large SR for each vessel by the individual captains.  
 
Use of public fish auction sales records in logbook data correction 
The premise underlying use of public fish auction data to evaluate logbook data accuracy is that 
the auction species identifications are definitive. In practice, this means that if the catch data 
from particular sets of some fishing trip have been identified as potential outliers by an objective 
statistical criterion, these data from the trip could be evaluated and corrected, if necessary, using 
the sales records. If, for example, logbook reports listed 10 blue marlin caught and kept, but sales 
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records from the trip included only five striped marlin, then that sales total indicates that at least 
5 striped marlin were misidentified as blue marlin in the logbook report. If the sales total was 
equal (or close) to the trip catch total, it would support changing all of the logbook-reported blue 
marlin to striped marlin. 
 
The principal complexity of the logbook data correction process involves the distinction between 
the set-level catch data and the trip-level sales records. Specifically, the large SR from the 
regression analyses are used to identify longline sets with questionable catch data, but it may still 
be difficult to assign corrections even with support from sales records. This is particularly true 
during periods of high relative abundance of one or more species. For example, if a winter 
longline trip yielded 100 or more striped marlin, all of which are reported in the logbook as blue 
marlin, the sales records verified that only striped marlin had been sold for the trip, and all of the 
logbook sets with blue marlin catches had large SR, the correction could still be difficult because 
many fish might go unsold as a result of high seasonal abundance. Identification of the specific 
sets that require correction and allocation of the misidentified fish among them from trip-level 
sales records would represent the principal difficulty in this process. 
 
This problem is compounded if multiple species are logged. Specifically, striped marlin and 
shortbill spearfish often go unsold when abundant. If a longline trip in winter yielded 50 striped 
marlin and 50 shortbill spearfish, the logbooks might list 33 blue marlin, 33 striped marlin and 
33 shortbill spearfish. In this scenario, sales records might not be helpful because it would not be 
unusual for about half the striped marlin and shortbill spearfish to be unsold. This means that the 
number of blue marlin reported in the logbooks would not be contradicted by the sales records, 
which would preclude correction in the logbook database. 
 
Corrected catches were allocated among sets by comparing the large SR to the values of the t-
distribution. Thus, if the sales records indicate that 25 fish should be corrected on two sets with 
SR of 2.0 and 2.6, respectively, the corrections might allocate 5 fish to the first and 20 to the 
second set because these SR absolute values approximate the 0.05 and 0.01 probability levels of 
the t-distribution. 
    
Figure 5 illustrates the positive effects of the availability of complete sales information. The 
much smaller standard deviations for blue and striped marlins in 2003 (Fig. 5c), compared to 
1995 (Fig. 5a) or 1998 (Fig. 5b), reflect the feasibility of checking all apparent outliers. In 
contrast, much of the patchiness remaining in Figures 5a and 5b reflects lack of sales records for 
verification purposes. 
 
Simple graphical presentations of logbook and auction data can also be used to identify species 
misidentifications. Figure 7 presents auction sales totals for blue and striped marlins from 25 
longline trips plotted against the corresponding trip totals for retained fish. The diagonal trend 
(open black circles) represents corrected numbers of sold striped marlin plotted against numbers 
of retained blue marlin as reported in the logbooks; striped marlin sales totals were significantly 
correlated (r=0.919, df = 23, P<<<104) with the numbers of blue marlin reported in the logbooks. 
In contrast, the corrected blue marlin sales values were mostly zeros or other small numbers. The 
solid blue circles along the x-axis represent large numbers of blue marlin logged, but few if any 
sold, and the solid black circles along the y-axis represent few striped marlin logged, but large 
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numbers sold. Thus, the auction records can be used graphically for exploratory purposes with 
the logbook data. 
 
Estimation of a corrected catch history from the PIFSC archives   
The corrected catches of blue shark (Walsh et al., 2002) and billfishes (Walsh et al., 2005; 2007) 
were estimated differently. In the former case, a statistical model fitted to observer data was used 
to predict catches; these values replaced data identified as biased by a multi-stage data evaluation 
process (Walsh et al. 2002). In the case of billfishes, sales records were extensively used to make 
the corrections as exact as possible.  
 
The blue shark annual catch totals (or other period) were estimated as the sum of blue sharks 
reported by fishery observers (O), those reported in logbooks that were accepted as accurate and 
did not undergo correction (LB), and the model-predicted catches (M) that replaced data judged 
to have been inaccurate (Walsh and Kleiber, 2001) (i.e., Catch=O+LB+M). Prediction intervals 
were obtained by bootstrapping (Walsh et al., 2002).  
   
Billfish catch totals (per year or other period) were estimated similarly, except that catch 
corrections relied upon verification by sales records. Important considerations include the fact 
that catches of blue marlin and other billfishes are much smaller than blue shark catches, the data 
checks were not restricted to zeros, and sales records were used to check the accuracy and 
correct the logbook catch data to the greatest extent possible. Thus, the corrected catch amount 
(Corrected) is a fraction of the catch total that is associated with sets identified as potential 
outliers by their SR and corrected on the basis of sales records rather than on model predictions 
as in blue shark (i.e., Catch = O + LB + Corrected). The corrected sets comprised about 5% of 
the catch data for both blue shark and the billfishes. 
 
It must be emphasized that billfish catch data were not corrected in the logbook database unless 
direct evidence from an observer or sales records was available for verification. This means that 
some sets before 2000 that were very large outliers remain in the database (e.g., logbook reports 
of multiple blue marlin north of the Main Hawaiian Islands in winter), although the objective 
statistical criterion (SR) used to identify possible outliers may have indicated strongly that 
certain of the unobserved trips or those without sales records were inaccurate. 
 
An important consideration regarding use of the billfishes corrected catch data stems from 
archival as a separate table (WALSH_MARLINS) in the ORACLE database. If stock 
assessments or other analyses are conducted with the corrected data, the results will differ from 
the uncorrected logbook data. If the catch inputs to stock assessments are not computed 
consistently, it would be expected to affect results.  
 
Archival of results  
Analytical work related to logbook data correction and accuracy has been archived in the 
ONAGA system at the PIFSC (R. Price: system administrator). Appropriate backups with full 
results have been prepared for all major projects that led to publications. Identical output has 
been submitted to the ORACLE database. 
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The detailed set-level billfish corrections are archived in the ORACLE data base. The sequence 
is Marlins_Corr<-dbGetQuery(con,”select from * from ORADATA.WALSH_MARLIN”) 
where Marlins_Corr would be an R data frame available for use. 
 
Analytical work was conducted in S+ until ca. 2010. The directories (in the Walsh home 
directory) have self-explanatory names; e.g. Walsh_Sharks_09 would refer to a shark project 
conducted during 2009. Text files in most of these directories are available to write out the 
working data; the exceptions would be directories for projects conducted concurrently as another 
project, using the same data set. To examine work from recent years, the text files can be 
imported directly into R using read.table(“text.file”,sep=” ”) , where read.table imports the file 
as a data frame, and sep indicates that the separator is white space. 
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Section III. Conclusions 
 
 
The preceding chapters and associated appendices describe the preparation and use of data from 
fishery observer reports and commercial logbooks in the Hawaii-based pelagic longline fishery. 
This detailed information and practical knowledge is intended to support the ongoing scientific 
work of the SAP to conduct pelagic stock assessments and research on the Hawaii longline 
fishery. In this final section, we present some conclusions and suggested improvements for 
technical work with the longline fishery data. One conclusion is that most practical research 
opportunities would entail retrospective investigations of the logbook data. Such efforts, in turn, 
would benefit from a thorough characterization of the multispecies catches and environmental 
conditions observed in each unique longline set, including catch history corrections as needed. It 
is important to develop a systematic approach to maximize the information content of the 
logbook database and correct data errors to the extent practicable. When considered from the 
perspective of ecosystem-based management, the capacity to readily analyze the multispecies 
longline catch data will be important for monitoring community dynamics, species abundances 
and potential interactions, and pelagic ecosystem processes.  
 
Another conclusion based on previous work on bycatch and incidentally caught species (Walsh, 
et al. 2002; 2005; 2007; 2009) is that the necessary information is also available to assess the 
relationships between catches of bycatch and target species in the Hawaii longline fishery. This 
would be of practical interest for fishery management and also would be of interest from an 
ecological perspective. Increased use of the PIROP multispecies longline catch and fishing 
operations data can directly improve understanding and capacity to predict fishery-related 
interactions such as handling mortality and discarding.  
 
In terms of suggested improvements, the primary one is to create a set of unique identifiers for 
each longline gear set during the entire history of the Hawaii longline fishery. Having a set of 
unique identifiers will remove the need for the data processing steps described in Chapter 2 and 
Appendix A . These steps involve identifying and matching longline sets by combining several 
character variables. This approach is complicated and may lead to database matching errors if 
done manually, without a predefined script or other software. In general, the set of unique 
identifiers for each longline set would be implemented in the components of both the observer 
and logbook databases. 
 
The secondary suggestions for improvement are also straightforward. One suggestion is to create 
R language scripts for all data preparation and analytical procedures that can be efficiently 
encoded, tested, and verified. Finalize data processing and analytical scripts could be archived in 
libraries on appropriate PIFSC server. Another suggestion is to standardize the naming of fields 
for data preparation and analyses. This would improve documentation, reproducibility, and 
maintainability of data processing and analytical approaches. For example, the names assigned to 
variables in the ORACLE schema, schema=ORADATA:WALSH_MARLIN, (K.L. Sender, 
PIFSC) provide one possible naming convention. Another suggestion is to standardize the 
statistical procedures used to evaluate logbook data accuracy. The choice of the outlier prediction 
model and the objective criteria used to identify possible outliers can be evaluated and likely 
improved through simulation testing. 
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Figure 1.-- Diagrammatic representation of PIROP data use by the SAP. At-sea data collection 
and onshore data evaluation steps performed by the PIROP (black) are followed by PIFSC 
archival (yellow). The SAP uses PIROP data from the outset of projects, when objectives are 
defined and responsibilities assigned (red). Preparation, additional evaluation, and archival of 
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information pertaining to the data and the analytical files used by all SAP members (white), and 
completion of a CPUE analysis (deep blue) as a stock assessment input. 
 

 
 
Figure 2.--Comparison of annual mean catches of blue shark Prionace glauca per observed 
longline set during 1995˗2014. The two traces are data reported by PIROP observers (dotted  
black line) and in commercial logbooks on observed trips (solid blue line).  
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Figure 3.--Comparison of annual mean catches of oceanic whitetip shark Carcharhinus 
longimanus per observed longline set during 2000˗2014. The two traces are data reported by 
PIROP observers (dotted black line) and in commercial logbooks on observed trips (solid blue 
line).  
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(a) Common in this fishery 

 

Striped marlin Kajikia audax 

 
Blue marlin Makaira nigricans

 
Shortbill spearfish Tetrapturus angustirostris

 
 

Figure 4.--Illustrations of the istiophorid billfishes taken as incidental catches by the Hawai’ian 
longline fishery. Useful distinguishing characteristics are shown. 
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(b) Uncommon or rare in this fishery 

 

 

Sailfish Istiophorus platypterus (uncommon) 

 
 

Black marlin Istiompax indica (rare)

 
 
 
Figure 4 (cont’d).--Illustrations of the istiophorid billfishes taken as incidental catches by the 
Hawai’ian longline fishery. Useful distinguishing characteristics are shown. 
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Figure 5a.--Illustration of the effects of logbook data correction with billfishes. 
Misidentifications during September–December 1995 affected the means and standard deviations 
for both species.  
 

 

 
Figure 5b.--Apparent misidentifications of blue marlin during October–December 1998 affected 
the means and standard deviations for three species.  
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Figure 5b (cont’d).--Apparent misidentifications of blue marlin during October–December 1998 
affected the means and standard deviations for three species.  
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Figure 5b (cont’d).--Apparent misidentifications of blue marlin during October–December 1998 
affected the means and standard deviations for three species.  
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Figure 5c.--Apparent misidentifications of blue marlin during October–December 2003 inflated 
the blue marlin standard deviation and affected the striped marlin mean and standard deviation.  
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Logbook data 
frame preparation 
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extracting 

operational data 
from the PIFSC 

ORACLE database. 

ORACLE  
Schema:”OPDT” 
LOG_HEADER 
LOG_DETAIL 

LOG_VIEW 

Establish the 
dimensions of the data 

frame (fields are 
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are rows). 
 

One longline set is an 
observation 
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as necessary 

 
Logbook archive 
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an R object (GAM or 

GLM) fitted to 
PIROP observer data 

are applied to the 
logbook data using 

the “predict” 
function. 

Catch data from 
logbooks are 

regressed on the 
predicted values; an 
objective statistical 
criterion identifies 
apparent outliers 
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numbers 
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Sales records verifications 
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using set-level 
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from direct 

information (i.e., sales) 
 

 
 

Figure 6.--Diagrammatic representation of commercial longline logbook data use. These steps 
generate an R data frame in a flat file format and can be used to prepare corrected catch histories. 
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Figure 7.--Comparison plot illustrating blue and striped marlin sales totals in relation to reported 
totals of retained fish. Correctly identified fish fall on a 1:1 line. The solid black circles reflect 
low or zero sales of striped marlin caused by misidentifications as blue marlin; the solid blue 
circles reflect low or zero sales of blue marlin caused by misidentifications as striped marlin. 
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Table 1. -- Summary of procedures used to calculate or obtain catches, catch rates, catch-related effects, sex ratios, observer 
commentary about operations or catches, and fishery sector definitions with PIROP data. Field names conform to those in the 
CATCH_MV table in the NEWOBS schema in the ORACLE database. Manipulations are performed in R after import from 
ORACLE as a data frame.   

Variable 
of interest Characteristics 

Required 
fields 

Procedure to obtain 
or calculate Remarks 

Total catch Expressed in numbers of 
fish 

 
ENGLISH_NAME 

 
 

KEPT_RETURN_CODE 
 

 
Obtained directly from 

observer catch file 
 

Sum of kept and discarded 
fish (and finned, if sharks) 

CHECK:   
ENGLISH_NAME 

not “NA”  
 

CHECK:                                        
Sum equal to total from 

ENGLISH_NAME  

Nominal 
catch per 
unit effort 
(CPUE) 

1000 ˟ 
(numbers of 

 fish caught / numbers  
of hooks set) 

ENGLISH_NAME 
 
 

NUM_HKS_SET 
 

Obtained directly from  
observer catch file  

 
Obtained directly from  

observer catch file 

CHECK: 
ENGLISH_NAME 

not “NA” 
 

CHECK:         
NUM_HKS_SET 

not “NA” 

Discarding 
rates 

Expressed in percentages 
of total catch or 
numbers of fish 

KEPT_RETURN_CODE 

Obtained directly from  
observer catch file  

 
Sum of discards (live, dead 
and in unknown condition) 

CHECK:          
KEPT_RETURN_CODE 

not “NA” 

Disposition 
of caught 

fish 

Expressed as the retained 
and discarded percentages 

of total catch  

ENGLISH_NAME 
 

KEPT_RETURN_CODE 

Calculated from two fields 
in the observer catch file:  
Retained, discarded, and 

finned fractions are divided 
by total catches. 

CHECK:   
ENGLISH_NAME 

not “NA”  
 

CHECK: 
KEPT_RETURN_CODE 

not “NA” 
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Table 1 (cont’d) 

Variable 
of interest Characteristics 

Required 
fields 

Procedure to obtain 
or calculate Remarks 

Handling mortality 
rates 

Expressed in percentages 
of total catch or of those     

surviving longline 
capture       

CAUGHT_COND_CODE 
 

KEPT_RETURN_CODE 

Calculated from two fields 
in the observer catch file: 

Select survivors of 
capture, subtract dead 
discards, and divide by 

appropriate total.  

CHECK: 
KEPT_RETURN_CODE 

not “NA” 
 

CHECK: 
CAUGHT_COND_CODE 

not “NA” 

Minimum 
mortality of 
caught fish 

Expressed in percentages 
of total catch KEPT_RETURN_CODE 

Calculated from one field 
in the observer catch file: 
Retained and discarded 

fractions plus the handling 
mortality fraction are 

divided by total catches. 

CHECK: 
KEPT_RETURN_CODE 

not “NA” 
 

CHECK: 
Handling mortality rates  

not “NA” 

Sex ratios 

Expressed as the ratio of 
males and females in 
sexually dimorphic or 
dichromatic species 

GENDER_CODE 

Calculated from one field 
in the observer catch file: 

Select sexed fish and 
divide the male and female 

fractions by the total. 

CHECK: 
ENGLISH_NAME 

not “NA” 
 

CHECK: 
GENDER_CODE 

not “NA” 

Fishery sector 
(deep “D” and 

shallow “S” sets) 

The fishery sectors are 
defined on the basis of 

the number of hooks per 
float on a longline set. 

HKS_PER_FLT 
 

Obtained by defining set 
deep and shallow set 

types:  
Set_type <- 

ifelse(HKS_PER_FLT<15, 
”S”, ”D”)  

CHECK: 
HKS_PER_FLT 

not “NA”  
 

CHECK:         
NUM_HKS_SET  

(typical values for sector) 
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Table 1 (cont’d) 

Variable 
of interest Characteristics 

Required 
fields 

Procedure to obtain 
or calculate Remarks 

Observer 
commentary 

Notes recorded at-
sea about various 

aspects of longline 
sets or catches  

CATCH_COMMENTS 
 

CATCH_COMMENTS_YN 

Obtained directly from 
observer catch file:  

Select 
CATCH_COMMENTS_YN 

= “Y” 
Use 

CATCH_COMMENTS 

CHECK: 
LOGBK_PG_NUM          

not “NA” 
 

CHECK: 
CATCH_COMMENTS_YN 

= “Y” and not “NA” 

Sizes 
March 1994    
–  August 

2003 
(Trips LL001 

– LL1064) 

  Morphometric 
measurements  
(total and fork 

lengths) 

TOTAL_LEN 
FORK_LEN 

(PRECAUDAL_LEN ==”NA”) 

Obtained directly from 
legacy files for tunas, 

sharks, and billfishes after 
their import into R as data 

frames. 

CHECK:  
Measurement not “NA” 

CHECK:  
Use data from Trip LL1064                      

and lower trip numbers 

Sizes 
August 2003    

– present  
(Trips LL1068 

– LL5175) 

  Morphometric 
measurements      
(total, fork, and 

precaudal lengths) 

TOTAL_LEN 
FORK_LEN 

PRECAUDAL_LEN 

Obtained directly from 
observer catch file: 

Complete time series 
prepared by concatenating 

legacy and recent data.  

CHECK:  
Measurement not “NA” 

CHECK:  
Avoid duplicate legacy data 
Delete LL1065 – LL1067 
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Table 2. --Summary of criteria used to evaluate the accuracy of PIFSC logbook data and its suitability for analytical use by the SAP. 
Field names conform to those in the CATCH_MV table in the NEWOBS schema in the ORACLE database except species names, 
which are in lower case.  
Longline data 

evaluation 
criterion 

Indicator of the 
need for longline 
data evaluation 

Reasons to evaluate longline 
data using this indicator Fields pertaining to indicator  Remarks and 

appropriate actions 

Commercial 
fishing using 

typical methods 
for this fleet 

SOAK_TIME 
Longline gear   
soak duration 
(longer soak     
than usual) 

Gear loss or other problem(s) 
 

Protected species interaction 

LINE_PARTED_YN 
NUM_SECTIONS_ RETRVD 

SETGEAR_COMMENTS 
SET_INTERACT_YN 

HAUL_INTERACT_YN 

Positive answers (“Y”) 
represent grounds to delete 

a set before analyses. 

Commercial 
fishing using 

typical methods 
for this fleet 

Longline gear 
begin-set time 

(later deployment     
than usual) 

Reduced soak duration caused 
by gear deployment delay 

 
Reduced catch or apparently 
distorted catch composition 

SET_BEGIN_DATETIME 
HAUL_BEGIN_DATETIME                               
Catches of target species and 

other species of interest 
CATCH_COMMENTS 

Reduced soak durations, 
unusual catches, or both 
may represent grounds to 

delete a set before 
analyses. 

Commercial 
fishing using 

typical methods 
for this fleet 

Longline gear 
mainline length 

(very short 
mainline) 

A mainline less than one mile 
in length, especially if two or 

more short mainlines are 
deployed 

MAINLN_LEN_RPTD 
A short mainline may 

reflect attempted 
avoidance of regulations 

Species-specific 
catch tallies 
compared to 

typical catches 
by this fleet 

Unusually large 
catches or 

unexpected zero 
catches 

Gear loss or other problem 
can lead to high bycatches 

 
Unexpected zeros or large 

catches may reflect 
misidentifications or some 

technical problem(s). 

LINE_PARTED_YN 
NUM_SECTIONS_ RETRVD 

 
CATCH_COMMENTS 

Positive answers (“Y”) 
represent grounds to delete 

a set before analyses. 
 

Check species 
identifications and correct 

mistakes if possible. 

Species-specific 
catch tallies 
compared to 

typical catches 
by this fleet 

Unexpected 
catches of rare or 

unusual species, or 
catches reported 
from outside a 

known distribution 

Unexpected positive      
catches may indicate 
misidentifications. 

O_OBSERVER_NUM 
PHOTO_YN 

SPECIMEN_YN 

Check observer experience 
(i.e., number and types of 

previous trips) 
Check species 

identifications and correct 
mistakes if possible. 
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Table 2 (cont’d) 

Longline data 
evaluation 
criterion 

Indicator of the 
need for longline 
data evaluation 

Reasons to evaluate longline 
data using this indicator Fields pertaining to indicator  Remarks and 

appropriate actions 

Species-specific 
catch tallies 
compared to 

typical catches 
by this fleet 

Discarding 
unusually high 

numbers of 
commercial species 

Discarding of commercial 
species in the context of high-
grading may reflect possible 
spoilage or quota avoidance. 

HIGH_GRADING_YN 
 

HIGH_GRADING_ 
COMMENTS       

Positive answers (“Y”) 
may represent grounds to 

delete a set before analyses 
if catch tally is doubtful. 
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Table 3.-- Summary of catch reporting patterns in the Hawaii-based longline fishery during 1995˗2014 for 10 species, including the 
two target species, two other tunas, three billfishes, and three sharks. Table entries include mean numbers caught, kept (and percent 
kept), and released, and the percent zero catches per set. For sharks, the mean numbers kept (K) and finned (F) are included. Data 
sources are PIROP fishery observer reports (Observer), logbooks from the observed trips (Logbook (Obs)), and logbooks from 
unobserved trips (Logbook (No obs)). Data are presented by fishery sectors, with descriptions of the status of the various species.  

Species 
Fishery sector 

and  
Species status 

Data source Mean catch   
per set 

Mean number 
kept per set 

Mean number 
released per 

set 

Percent zero 
catches 

Swordfish 
Xiphias gladius 

Deep 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.387 
 

0.338 
 

0.179 

0.220  (56.8) 
 

0.260  (76.9) 
 

0.160  (89.4) 

0.167 
 

0.078 
 

0.019 

73.2 
 

80.4 
 

86.5 

Shallow 
 

Target species 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

11.881 
 

11.192 
 

8.038 

10.580  (89.0) 
 

10.248  (91.6) 
 

 7.654  (95.2) 

1.301 
 

0.944 
 

0.384 

2.3 
 

5.2 
 

15.8 

Bigeye tuna 
Thunnus obesus 

Deep 
 

Target species 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

9.301 
 

8.674 
 

8.460 

   8.802  (94.6) 
 

 8.421  (97.1) 
 

 8.299  (98.1) 

0.500 
 

0.265 
 

0.161 

7.0 
 

7.6 
 

8.5 

Shallow 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

1.163 
 

1.151 
 

2.916 

1.075  (92.4) 
 

1.105  (96.0) 
 

2.857  (98.0) 

0.089 
 

0.063 
 

0.059 

54.3 
 

55.6 
 

38.0 
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Table 3 (cont’d) 

Species 
Fishery sector 

and  
Species status 

Data source Mean catch   
per set 

Mean number 
kept per set 

Mean number 
released per 
set 

Percent zero 
catches 

Albacore 
Thunnus alalunga 

Deep 
 

Secondary 
target, 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

 
1.321 
 
1.335 
 
2.090 

 
1.285   (97.3) 
 
1.250   (93.6) 
 
2.073   (99.2) 

 
0.035 
 
0.016 
 
0.017 

 
71.6 
 
71.3 
 
66.0 

Shallow 
 

Incidental 
catch, 

Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

 
1.460 
 
1.185 
 
2.082 

 
0.814   (55.8) 
 
0.674   (56.9) 
 
1.269   (61.0) 

 
0.645 
 
0.419 
 
0.813 

 
64.0 
 
69.1 
 
60.0 
 

Yellowfin tuna 
Thunnus albacares 

Deep 
 

Secondary 
target, 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

 
1.895 
 
1.786 
 
1.687 

 
1.729   (91.2) 
 
1.703   (95.4) 
 
1.638   (97.1) 

 
0.166 
 
0.082 
 
0.050 

 
56.4 
 
57.6 
 
56.9 

Shallow 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

 
0.368 
 
0.344 
 
1.303 
 

 
0.348   (94.6) 
 
0.332   (96.5) 
 
1.282   (98.4) 

 
0.020 
 
0.013 
 
0.021 

 
81.1 
 
82.0 
 
57.7 
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Table 3 (cont’d) 

Species 
Fishery sector 

and  
Species status 

Data source Mean catch   
per set 

Mean number 
kept per set 

Mean number 
released per 

set 

Percent zero 
catches 

Blue marlin 
Makaira nigricans  

Deep 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.253 
 

0.271 
 

0.297 

0.244   (96.4) 
 

0.259   (95.6) 
 

0.293   (98.7) 

0.009 
 

0.005 
 

0.003 

82.3 
 

82.5 
 

81.4 

Shallow 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.155 
 

0.189 
 

0.611 

0.139   (89.7) 
 

0.149   (78.8) 
 

0.597   (97.7) 

0.016 
 

0.008 
 

0.014 

90.9 
 

90.2 
 

76.5 

Striped marlin 
Kajikia audax 

Deep 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.934 
 

0.857 
 

0.893 

0.880   (94.2) 
 

0.817   (95.3) 
 

0.882   (98.8) 

0.053 
 

0.020 
 

0.011 

59.4 
 

61.7 
 

60.8 

Shallow 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.545 
 

0.482 
 

0.686 

0.485   (89.0) 
 

0.425   (88.2) 
 

0.644   (93.9) 

0.060 
 

0.035 
 

0.042 

73.9 
 

76.6 
 

71.2 
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Table 3 (cont’d) 

Species 
Fishery sector 

and  
Species status 

Data source Mean catch   
per set 

Mean number kept 
per set 

Mean 
number 
released per 
set 

Percent zero 
catches 

Shortbill spearfish 
 

Tetrapturus 
angustirostris 

Deep 
 

Incidental 
catch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.844 
 
0.791 
 
0.853 

0.780   (92.4) 
 

0.762   (96.3) 
 

0.842   (98.7) 

0.064 
 
0.022 
 
0.011 

58.9 
 
61.8 
 
60.5 

Blue shark  
Prionace glauca 

Deep 
 

Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

4.259 
 
3.659 
 
2.888 

0.009 (K)   0.180(F) 
 
0.045 (K)   0.164 (F) 
 
0.015 (K)   0.595 (F) 

4.070 
 
3.450 
 
2.278 

13.3 
 
24.3 
 
30.0 

Shallow 
 

Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

8.680 
 
8.370 
 
10.826 

0.003 (K) 0.722 (F) 
 
0.022 (K)  0.698 (F) 
 
0.011 (K)  3.592 (F) 

7.941 
 
7.651 
 
7.223 

3.9 
 
10.3 
 
13.9 

Thresher sharks 
Alopias spp.  

Deep 
 

Incidental 
catch, Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.477 
 
0.409 
 
0.343 

0.026 (K) 0.005 (F) 
 
0.027 (K)  0.006 (F) 
 
0.022 (K)  0.022 (F) 

0.403 
 
0.375 
 
0.298 

77.1 
 
76.9 
 
86.5 

Shallow 
 

Incidental 
catch, Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.044 
 
0.051 
 
0.078 

0.004 (K)   0.001 (F) 
 
0.004 (K)   0.001 (F)  
 
0.011 (K)   0.015 (F)  

0.033 
 
0.046 
 
0.051 

96.2 
 
96.3 
 
96.7 
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Table 3 (cont’d) 

Mako sharks 
Isurus spp. 

 (Observer data for 
Kept, Finned, and 

Released sharks are for 
shortfin makos only) 

Deep 
 

Incidental 
catch, Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.191 
 

0.162 
 

0.122 

0.055 (K)  0.001 (F) 
 

0.058 (K)  0.002 (F) 
 

0.058 (K)  0.008 (F) 

 
0.117 

 
0.102 

 
0.057 

 

84.3 
 

87.2 
 

90.4 

Shallow 
 

Incidental 
catch, Bycatch 

Observer 
 

Logbook (Obs) 
 

Logbook (No obs) 

0.625 
 

0.550 
 

0.123 

0.073 (K)   0.008 (F) 
 

0.070 (K)   0.006 (F) 
 

0.022 (K)   0.024 (F) 

0.529 
 

0.474 
 

0.077 

61.5 
 

67.5 
 

93.0 
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Table 4.-- Summary of procedures used to identify unique longline sets and calculate several variables related to effort with PIFSC 
logbook data. Field names conform to those in the LOGHDR table in the OPDT schema in the ORACLE database. Manipulations are 
performed in R after import from ORACLE as a data frame. Relevant caveats are presented. “NA” denotes “not available”. 

Operational 
parameter(s)  

(or other variable) 

Variable name 
(ORACLE: 

Log_Header) 

Variable  
Characteristics 

Required calculations 
or manipulations with 

variable(s) 

Pertinent caveat(s)      
or remarks  

Unique set identifier 
(NA in ORACLE) 

Unique_set_ID 
(NA in ORACLE) Character 

R “paste” function used 
to manipulate three 

fields. 

Need ORACLE fields: 
LAND_YR, TRIPNUM, 

SERIALNUM 

Unique set identifier 
(second: 1998–present) Logpage Character None 

This is the logbook page 
serial number, useful for 

all sets since 1998. 

Dates of fishing 
(Haul dates) 

HAULYR, 
HAULMON, 
HAULDAY 

Reported since November 
1990. 

Numeric 

No required calculations 
or manipulations.     

Date calculations using 
combinations simple. 

None 
These are begin-haul 
times, uninformative 

about long hauls. 

Dates of fishing 
(Set dates) 

SETYR,  
SETMON,  
SETDAY 

Reported since January 
1995. 

Numeric 

No required calculations 
or manipulations.      

Date calculations using 
combinations simple. 

Useful since 1995. 
These are begin-set 

times, uninformative 
about long sets. 

Hooks 
(Number of hooks set 
as a measure of effort) 

HOOKSSET 
 

HOOKS_LOST 

Hooks set and lost reported 
since November 1990 and 

2000, respectively.  
Numeric 

Hooks set 
 

Hooks set - Hooks lost 

Hooks set useful prior to 
2000. Hooks set and lost 

useful since 2001. 
Average loss 2 hooks. 

Characteristics 
of fishing effort 

TRIP_TYPE 
 
 

TARGET 

Character 
 
 

Character 

None 

Reported since 1990 and 
1995, respectively. Not 

in definition of two-
sector management. 
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Table 4 (cont’d) 
Operational 
parameter(s)  

(or other variable) 

Variable name 
(ORACLE: 

Log_Header) 

Variable  
Characteristics 

Required calculations 
or manipulations with 
variable(s) 

Pertinent caveat(s)      
or remarks  

Hooks per float 

Hooks 
 

HOOKSSET 
 

HOOKS_LOST 

Numeric 

Imputed for 1990˗1994 
based on histories of 
vessels or captains after 
1995. 

Reported since 1995. 
Basis of definition of 

two-sector 
 management.  

Set types Hooks per float Numeric 

Imputed for 1990˗1994 
based on histories of 

vessels or captains after 
1995. 

Shallow sets use < 15 
hooks per float; deep 
sets use 15 or more 

hooks per float. 

Spatial variables 

Latitude and longitude 
in degrees and minutes 

 
BHLAT_DEG 

 
BHLAT_MIN 

Numeric 

Arithmetic averages of 
end-set (ES --- not 

shown) and begin-haul 
(BH) positions. 

Begin-set, end-set, 
begin-haul, and end-

haul positions available 
since 2001. 
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APPENDIX A  
 

This appendix is arranged as a series of examples to show preparation and use of longline 

logbook data from the NOAA Fisheries Pacific Islands Fisheries Science Center.  

 

Example A_1. Commands used to import data from the PIFSC data base into R as data frames. 

Example A_2. Summary of data frame preparation in R format for the PIFSC longline logbook 

database. 

Example A_3. SST Data Matcher Instructions and Format Requirements 

Example A_4. Truncations and final preparations applied to the logbook data set before detailed 

accuracy evaluations based on comparisons to predictions from a statistical model. 
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Example A 1. Commands used to import data from the PIFSC data base into R as data frames. 
> library(ROracle) 
> ora<-dbDriver(“ROracle”) 
> con<-dbConnect(ora,user=”user_name”,password=”your_pswd”,dbname=”PIC”) 
> dbListTables(con,schema=”OPDT”) 
[1] “LOGDETAIL”  “LOGHDR”  “LOG_VW” 
> DF_1<-dbGetQuery(con,”select * from OPDT.LOGDETAIL”) 
> class(DF1) 
[1] “data.frame” 
> dim(DF_1) 
[1] 2260443  21  
> DF_2-dbGetQuery(con,”select * from OPDT.LOGHDR”) 
> class(DF_2) 
[1] “data.frame” 
> dim(DF_2) 
[1] 356457   105  
> DF_3<-dbGetQuery(con,”select * from OPDT.LOG_VW”) 
> class(DF3) 
[1] “data.frame” 
> dim(DF_3) 
[1] 2261454  102 
> Log_Detail<-DF_1 
> Log_Header<-DF_2 
> Log_View<-DF_3 
> objects() 
[1] “Log_Detail” “Log_Header”  “Log_View” 
These are the data frames needed to construct the analytical data frame for the logbooks. 
Example A 2. Summary of data frame preparation for the PIFSC longline logbook database. The 

tables used are LOGHDR and LOGDETAIL. Explanatory notes are italicized. PIROP observer 

data would be treated similarly. 

File dimensions (both are data frames) 
> dim(Log_Detail) 
[1] 2260443      21 
> dim(Log_Header) 
[1] 356457    106 
First field in the logbook data frame is the Logpage (this is the logbook page serial number, 
which has served as a unique set identifier since 1997).  
> Logsdata<-data.frame(Log_Header$Logpage) 
> dim(Logsdata) 
[1] 356457      1 
  
The linking variables and unique set identifiers must be character variables. 
> Logsdata$Logpage<-as.character(Logsdata$Log_Header.Logpage) 
> dim(Logsdata)                                                                                                                                                                    
[1] 356457      2 
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> summary(Logsdata) 
 Log_Header.Logpage   Logpage          
 1      :  8567     Length:356457      
 2      :  8334     Class :character   
 3      :  8081     Mode  :character   
 4      :  7740                        
 5      :  7432                        
 6      :  7030                        
 (Other):309273                        
> mode(Logsdata$Logpage) 
[1] "character" 
The extra field shows where it was obtained (i.e., copied from Log_Header) Delete.  
> Logsdata$Log_Header.Logpage<-NULL 
> dim(Logsdata) 
[1] 356457      1 
> Correct 
Addition of numerical temporal variables 
 
> dim(Logsdata) 
[1] 356457      1 
> Logsdata$Haulyr<-Log_Header$HAULYR 
> Logsdata$Haulmo<-Log_Header$HAULMON 
> Logsdata$Haulday<-Log_Header$HAULDAY 
  
> Logsdata$Setyr<-Log_Header$SETYR 
> Logsdata$Setmo<-Log_Header$SETMON 
> Logsdata$Setday<-Log_Header$SETDAY 
  
> Logsdata$Depart_yr<-Log_Header$DEPART_YR 
> Logsdata$Depart_mo<-Log_Header$DEPART_MON 
> Logsdata$Depart_day<-Log_Header$DEPART_DAY 
  
> Logsdata$Return_yr<-Log_Header$RETURN_YR 
> Logsdata$Return_mo<-Log_Header$RETURN_MON 
> Logsdata$Return_day<-Log_Header$RETURN_DAY 
 > Logsdata$Land_yr<-Log_Header$LANDYR 
> Logsdata$Land_mo<-Log_Header$LANDMO 
The variable additions appear correct. Zero values for dates are incorrect. 
 
 
Addition of variables related to effort. 
> Logsdata$Tripnum<-Log_Header$TRIPNUM 
> Logsdata$Trip_type<-Log_Header$TRIPTYPE 
> Logsdata$Target<-Log_Header$TARGET 
  
> mode(Logsdata$Tripnum) 



 

A-4 
 

[1] "numeric" 
> sum(Logsdata$Tripnum) 
[1] 231272503 
Correct --- advantageous to use as numeric 
 
> mode(Logsdata$Trip_type)   
[1] "numeric" 
> table(Logsdata$Trip_type) 
     B         C        M           T  
 28900   7447   35085   285025  
The letters denote: B=Broadbill (swordfish); C=Certificate (shallow-set ca. 2004; also 
swordfish); M=mixed species; T=tunas.  
 
> Logsdata$Trip_type<-as.character(as.factor(Logsdata$Trip_type)) 
> table(Logsdata$Trip_type) 
     B         C        M          T  
 28900   7447   35085  285025  
> mode(Logsdata$Trip_type) 
[1] "character" 
Correct mode change; no change in tabulation. 
 
 
 
> table(Logsdata$Target) 
     M       B        BM    M       B      M      T         T M    TB  TBM  
 19976  19533     20     14    157    224 264314     45     51     20  
> mode(Logsdata$Target) 
[1] "numeric" 
> Logsdata$Target<-as.character(as.factor(Logsdata$Target)) 
> mode(Logsdata$Target) 
[1] "character" 
> table(Logsdata$Target) 
     M       B        BM    M       B      M      T         T M   TB  TBM  
 19976  19533     20     14    157    224 264314     45     51     20  
Correct mode change; no change in tabulation. Multiple categories introduce ambiguity. 
 
> Logsdata$Setnum<-Log_Header$SETNUM 
> Logsdata$ResExptCode<-Log_Header$RSCH_EXPMTL_CODE 
> Logsdata$Permit<-Log_Header$PERMITNUM 
> Logsdata$Vessel<-Log_Header$VESSELNAME 
> Logsdata$CML<-Log_Header$CML 
> Logsdata$Hooks<-Log_Header$HOOKSSET 
> Logsdata$Permit<-as.character(as.factor(Logsdata$Permit)) 
Correct 
 
> Logsdata$Vessel<-as.character(as.factor(Logsdata$Vessel)) 
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> Logsdata$CML<-as.character(as.factor(Logsdata$CML)) 
> Logsdata$Hooks<-Log_Header$HOOKSSET 
 
 
 
Identification of experimental sets and research activities. 
> mode(Logsdata$ResExptCode) 
[1] "numeric" 
> unique((Logsdata$ResExptCode)) 
[1] <NA> R    X    
Levels: R X 
> table((Logsdata$ResExptCode)) 
   R    X  
2017  223  
> Logsdata$ResExptCode<-as.character(as.factor(Logsdata$ResExptCode)) 
> table((Logsdata$ResExptCode)) 
   1      2  
2017  223  
> mode((Logsdata$ResExptCode)) 
[1] "character" 
> Logsdata$ResExptCode<-ifelse(Logsdata$ResExptCode=="1","R",Logsdata$ResExptCode) 
> Logsdata$ResExptCode<-ifelse(Logsdata$ResExptCode=="2","X",Logsdata$ResExptCode) 
> Logsdata$ResExptCode<-ifelse(is.na(Logsdata$ResExptCode),"LL",Logsdata$ResExptCode) 
> table((Logsdata$ResExptCode)) 
    LL        R         X  
354217   2017    223  
 If neither research nor experimental, commercial longline activity. 
> 354217+2017+223 
[1] 356457 
> dim(Logsdata) 
[1] 356457     21 
Correct 
 
The next two variables refer to the PIROP trip and set codes. These differed from the PIFSC 
assigned trip and set numbers. 
> Logsdata$Tripnum.obs<-Log_Header$OBSTRIPNUM 
> mode(Logsdata$Tripnum.obs) 
[1] "numeric" 
> Logsdata$Tripnum.obs<-as.character(as.factor(Logsdata$Tripnum.obs)) 
> Logsdata$Setnum.obs<-Log_Header$OBSSETNUM 
> Logsdata$Setnum.obs<-as.character(as.numeric(Logsdata$Setnum.obs)) 
This facilitates checking to determine whether there was an observer on that fishing trip. 
 
Unique set identifiers 
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This is a simple matter after 1997 because the logbook page serial number was instituted as a 
unique set identifier during 1997. Thus, for 1998 and beyond, Logsdata$Logpage was copied 
within the data frame and renamed Logsdata$unique_set_ID. 
The unique set identifier for the earlier years was created by turning the Logsdata$Landyr, 
Logsdata$Tripnum, and Logsdata$Serialnum variables into characters, and then making a 
unique identifier variable with the “paste” command. 
> Logsdata$Land_yr1<-as.character(as.numeric(Logsdata$Land_yr)) 
> Logsdata$unique_set_ID<-ifelse(Logsdata$Haulyr>1997,Logsdata$Logpage,"NA") 
This means that if the haul year was 1998 or later, the logpage serial number is the identifier.   
> Logsdata$Land_yr1<-as.character(as.numeric(Logsdata$Land_yr)) 
> Logsdata$Tripnum1<-as.character(as.numeric(Logsdata$Tripnum)) 
> Logsdata$Serialnum1<-as.character(as.numeric(Logsdata$Serialnum)) 
> Logsdata$unique_set_ID1<paste(Logsdata$Land_yr1,Logsdata$Tripnum1, 
Logsdata$Serialnum1) 
> length(unique(Logsdata$unique_set_ID)) 
[1] 356447 
> dim(Logsdata) 
[1] 356457     33 
Ten sets remain unidentified. 
Additional operational variables 
Mainline length (nautical miles) 
> Logsdata$ML_length<-Log_Header$MAINLINE 
> summary(Logsdata$ML_length) 
   Min. 1st Qu.  Median    Mean   3rd Qu.     Max.     NA's  
   0.00   29.00     33.00      34.55    40.00     620.00   52992 
The maximum may be a units problem or similar error. 
 
Hooks per float 
This is particularly important because hooks per float became the basis for two sector 
management after 2001. 
> summary(Log_Header$MAXHKSFLT) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.    NA's  
   0.00    24.00    26.00      23.98   30.00     88.00   54772  
> summary(Log_Header$MINHKSFLT) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.     NA's  
   0.00    24.00    26.00      23.88    30.00      88.00   50521  
 
> Log_Header$Hkpfl<-(Log_Header$MINHKSFLT+Log_Header$MAXHKSFLT)/2 
> summary(Log_Header$Hkpfl) 
   Min. 1st Qu.  Median    Mean 3rd Qu.     Max.    NA's  
   0.00   24.00      26.00     23.98   30.00     88.00   54772  
 
The preceding steps made the average number of hooks per float in Log_Header; it is now 
assigned to Logsdata. 
> Logsdata$Hkpfl<-Log_Header$Hkpfl 
> summary(Logsdata$Hkpfl) 
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   Min. 1st Qu.  Median    Mean  3rd Qu.     Max.    NA's  
   0.00    24.00    26.00     23.98    30.00      88.00   54772  
> Logsdata$Max_Hkpfl<-Log_Header$MAXHKSFLT 
> Logsdata$Hkpfl<-ifelse(is.na(Logsdata$Hkpfl),Logsdata$Max_Hkpfl,Logsdata$Hkpfl) 
> summary(Logsdata$Hkpfl) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.     NA's  
   0.00    24.00    26.00      23.98   30.00     88.00   54772  
  
> Logsdata$Min_Hkpfl<-Log_Header$MINHKSFLT 
> Logsdata$Hkpfl<-ifelse(is.na(Logsdata$Hkpfl),Logsdata$Min_Hkpfl,Logsdata$Hkpfl) 
> summary(Logsdata$Hkpfl) 
   Min. 1st Qu.  Median    Mean 3rd Qu.     Max.    NA's  
   0.00   24.00     26.00      23.88   30.00     88.00   50521  
 
> junk<-Logsdata[is.na(Logsdata$Hkpfl), ] 
> dim(junk) 
[1] 50521    38 
> table(junk$Haulyr) 
 1990   1991   1992    1993     1994   1995 1996  1997  1998  1999  2000  2001  2003  2004  2005  
1015  12635  11546  12318   10799   1896   95      67      34      31      38      30      1       15       1  
Most of the sets lacking hooks per float information were from 1990 through 1994.  
Imputation of the hooks per float may be feasible because many captains apparently habitually 
use a certain number of hooks per float (or possibly just always report the same value). 
 
Set types as factors 
> A two-level factor variable and corresponding character variable are created using the hooks 
per float (hkpfl). The factor variable is intended for use in GLM analyses.  
> Logsdata$Set_type<-ifelse((is.na(Logsdata$Hkpfl)),"0","NA") 
> Logsdata$Set_type<-ifelse(Logsdata$Hkpfl<15,"1",Logsdata$Set_type) 
> Logsdata$Set_type<-ifelse(Logsdata$Hkpfl>=15,"2",Logsdata$Set_type) 
  
> table(Logsdata$Set_type) 
     1           2  
 43234   262702  
> 43234+262702 
[1] 305936 
> unique(Logsdata$Set_type) 
[1] NA  "1" "2" 
 
> Logsdata$Set_type<-ifelse(Logsdata$Set_type=="1","S","D") 
> unique(Logsdata$Set_type) 
[1] NA  "S" "D" 
> table(Logsdata$Set_type) 
     D         S  
262702  43234  
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> Logsdata$Set_type1<-as.factor(Logsdata$Set_type) 
> Logsdata$Set_type1<-ifelse(Logsdata$Set_type1=="S",1,2) 
> table(Logsdata$Set_type1) 
     1      2  
 43234 262702  
Correct 
Temporal variables as factors 
> Logsdata$Haulyr1<-as.factor(Logsdata$Haulyr) 
> table(Logsdata$Haulyr1) 
 1990  1991   1992   1993   1994   1995   1996   1997   1998   1999   2000   2001   2002  
 1015 12635 11546 12318 10799 11732 11638 11846 12505 12805 12931 12186 14110  
 2003   2004  2005    2006   2007   2008   2009   2010   2011   2012   2013   2014  
14883 16029 18195 17302 19385 19482 18572 17948 18641 19466 19734  8754  
 
> Logsdata$Quarter<-ifelse(Logsdata$Haulmo<4,1,"NA") 
> Logsdata$Quarter<-ifelse(Logsdata$Haulmo>3 & Logsdata$Haulmo<7,2,Logsdata$Quarter) 
> Logsdata$Quarter<-ifelse(Logsdata$Haulmo>6 & Logsdata$Haulmo<10,3,Logsdata$Quarter) 
> Logsdata$Quarter<-ifelse(Logsdata$Haulmo>9,4,Logsdata$Quarter) 
  
> table(Logsdata$Quarter) 
    1        2          3        4  
95392 92912 74558 93595  
  
> Logsdata$Quarter1<-as.factor(as.numeric(Logsdata$Quarter)) 
> table(Logsdata$Quarter1) 
    1         2         3        4  
95392 92912 74558 93595  
> mode(Logsdata$Quarter1) 
[1] "numeric" 
> sum(Logsdata$Quarter1) 
Error in Summary.factor(c(4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,  :  
  ‘sum’ not meaningful for factors 
Correct 
 
 
Positions 
> Log_Header$BS_latitude<-Log_Header$BSLATDEG+(Log_Header$BSLATMIN/60) 
> summary(Log_Header$BS_latitude) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
   0.00   18.03      22.05     22.29   26.95    46.00      26  
 
> Log_Header$EH_latitude<-Log_Header$EHLATDEG+(Log_Header$EHLATMIN/60) 
> Log_Header$BS_latitude<-Log_Header$BSLATDEG+(Log_Header$BSLATMIN/60) 
> summary(Log_Header$BS_latitude) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
   0.00   18.03      22.05     22.29   26.95     46.00      26  
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> summary(Log_Header$EH_latitude) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
   0.00   17.53     21.73      21.81   26.33     45.60   50206  
  
> Log_Header$Latitude<-(Log_Header$BS_latitude+Log_Header$EH_latitude)/2 
> summary(Log_Header$Latitude) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
   0.00   17.52      21.73     21.81   26.33     45.63   50207  
  
> summary(Log_Header$BHLATDEG) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
    0.0    18.0        22.0        21.8    26.0        46.0      83  
> summary(Log_Header$BHLATMIN) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
   0.00   14.00      29.00     29.26   45.00    59.00      83  
> summary(Log_Header$EHLATDEG) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
   0.00   17.00     21.00      21.32   26.00     45.00   50206  
> summary(Log_Header$EHLATMIN) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
   0.00   14.00     29.00      29.34   45.00     59.00   50206  
  
> Log_Header$Latitude<-
ifelse((is.na(Log_Header$Latitude)),(Log_Header$BHLATDEG+(Log_Header$BHLATMIN/60
)),Log_Header$Latitude) 
> summary(Log_Header$Latitude) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
   0.00   18.03     22.06      22.29   26.95     46.63      82  
 
 
> Log_Header$Longitude<-
ifelse((is.na(Log_Header$Longitude)),(Log_Header$BHLONGDEG+(Log_Header$BHLONG
MIN/60)),Log_Header$Longitude) 
 
> summary(Log_Header$Longitude) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
    0.0    154.7     159.1      158.7   162.9      180.0      82  
  
> Logsdata$Latitude<-Log_Header$Latitude 
> Logsdata$Longitude<-Log_Header$Longitude 
> Logsdata$Longitude_SST<-Log_Header$Longitude*(-1) 
>  
> summary(Logsdata$Latitude) 
   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  
   0.00   18.03     22.06      22.29   26.95     46.63      82  
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> summary(Log_Header$Longitude) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
    0.0    154.7    159.1       158.7  162.9      180.0      82  
 > summary(Logsdata$Longitude_SST) 
   Min.   1st Qu.  Median    Mean    3rd Qu.    Max.    NA's  
 -180.0   -162.9   -159.1     -158.7    -154.7        0.0      82 
Begin-set time 
> Log_Header$BS_Time<-Log_Header$BSHR+(Log_Header$BSMIN/60) 
> summary(Log_Header$BS_Time) 
   Min.   1st Qu.  Median    Mean   3rd Qu.    Max.     NA's  
  1.000   7.083      8.000     10.020   9.750    24.000     780  
  
> Logsdata$BS_Time<-Log_Header$BS_Time 
> summary(Logsdata$BS_Time) 
   Min. 1st Qu.  Median    Mean    3rd Qu.    Max.    NA's  
  1.000   7.083    8.000     10.020    9.750    24.000     780  
 
 
Fishing Regions --- discretized and made into a factor (Brodziak & Walsh 2013) 
> Logsdata$Region<-ifelse(Logsdata$Latitude<10 & Logsdata$Longitude<160,1,"NA") 
> Logsdata$Region<-ifelse(Logsdata$Latitude<10 & 
Logsdata$Longitude>=160,2,Logsdata$Region) 
> Logsdata$Region<-ifelse((Logsdata$Latitude>=10 & Logsdata$Latitude<20) & 
Logsdata$Longitude<160,3,Logsdata$Region) 
> Logsdata$Region<-ifelse((Logsdata$Latitude>=10 & Logsdata$Latitude<20) & 
Logsdata$Longitude>=160,4,Logsdata$Region) 
> Logsdata$Region<-ifelse((Logsdata$Latitude>=20 & Logsdata$Latitude<30) & 
Logsdata$Longitude<160,5,Logsdata$Region) 
> Logsdata$Region<-ifelse((Logsdata$Latitude>=20 & Logsdata$Latitude<30) & 
Logsdata$Longitude>=160,6,Logsdata$Region) 
> Logsdata$Region<-ifelse(Logsdata$Latitude>=30 & 
Logsdata$Longitude<160,7,Logsdata$Region) 
> Logsdata$Region<-ifelse(Logsdata$Latitude>=30 & 
Logsdata$Longitude>=160,8,Logsdata$Region) 
 
 
  
> table(Logsdata$Region) 
     1         2         3          4          5           6           7         8  
  1034   8683  52449  73155 121465  59652  23445  16492  
> mode(Logsdata$Region) 
[1] "character" 
> Logsdata$Region1<-as.factor(as.character(Logsdata$Region)) 
> table(Logsdata$Region1) 
       1         2         3          4          5           6           7         8  
  1034   8683  52449  73155 121465  59652  23445  16492  
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> mode(Logsdata$Region1) 
[1] "numeric" 
Correct 
 
The remainder of this example presents the catch compilations and links to the operational 
information. 
Blue shark 
> junk<-Log_Detail[Log_Detail$ENGLISH_NAME=="BLUE SHARK",] 
> dim(junk) 
[1] 255380   25 
> junk$unique_set_ID1<-junk$unique_set_ID 
> mode(junk$unique_set_ID1) 
[1] "character" 
 This allows linking this data frame with all blue shark records to the operational information. 
 
> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
 
> junk$Blue_shark<- junk$NUMFINNED+ junk$NUMKEPT+ junk$NUMRELEASED 
 
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
 
> Logsdata$Blue_shark<-junk$Blue_shark[match1] 
> Logsdata$BS_Finned<-junk$NUMFINNED[match1] 
> Logsdata$BS_Kept<-junk$NUMKEPT[match1] 
> Logsdata$BS_Released<-junk$NUMRELEASED[match1] 
  
> summary(Logsdata$Blue_shark) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.     NA's  
   0.00    2.00      4.00         6.55     7.00      800.00   101077  
 
 
> summary(Logsdata$BS_Finned) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.     NA's  
   0.00     0.00      0.00         0.98    0.00      700.00   101077  
> summary(Logsdata$BS_Kept) 
   Min.  1st Qu.  Median    Mean 3rd Qu.    Max.     NA's  
   0.00     0.00       0.00        0.15    0.00     400.00   101077  
> summary(Logsdata$BS_Released) 
   Min. 1st Qu.  Median    Mean   3rd Qu.     Max.      NA's  
   0.00    1.00       3.00         5.43    6.00        800.00   101077  
   
> Logsdata$Blue_shark<-ifelse((is.na(Logsdata$Blue_shark)),0,Logsdata$Blue_shark) 
> summary(Logsdata$Blue_shark) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.  
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  0.000   0.000     2.000     4.693    5.000   800.000  
  
> Logsdata$BS_Finned<-ifelse((is.na(Logsdata$BS_Finned)),0,Logsdata$BS_Finned) 
> Logsdata$BS_Kept<-ifelse((is.na(Logsdata$BS_Kept)),0,Logsdata$BS_Kept) 
> Logsdata$BS_Released<-ifelse((is.na(Logsdata$BS_Released)),0,Logsdata$BS_Released) 
  
> summary(Logsdata$Blue_shark) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.  
  0.000   0.000    2.000      4.693   5.000    800.000  
> sum(Logsdata$Blue_shark) 
[1] 1672690 
  
> summary(Logsdata$BS_Finned) 
    Min.   1st Qu.   Median    Mean   3rd Qu.     Max.  
  0.0000   0.0000   0.0000   0.6988   0.0000 700.0000  
> sum(Logsdata$BS_Finned) 
[1] 249079 
  
> summary(Logsdata$BS_Kept) 
    Min.   1st Qu.   Median   Mean    3rd Qu.    Max.  
  0.0000   0.0000   0.0000   0.1058   0.0000 400.0000  
> sum(Logsdata$BS_Kept) 
[1] 37729 
 
> summary(Logsdata$BS_Released) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.  
  0.000   0.000    2.000     3.888     4.000    800.000  
> sum(Logsdata$BS_Released) 
[1] 1385882 
> 249079+37729+1385882 
[1] 1672690 
Correct 
 
 
Mako shark  
> junk<-Log_Detail[Log_Detail$ENGLISH_NAME=="MAKO SHARK",] 
> dim(junk) 
[1] 37883    25 
> junk$unique_set_ID1<-junk$unique_set_ID 
This allows linking this data frame with all mako records to the operational information. 
> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
    
> junk$Mako_shark<-junk$NUMKEPT+junk$NUMFINNED+junk$NUMRELEASED 
> summary(junk$Mako_shark) 
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   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.  
  0.000   1.000    1.000      1.385   1.000     48.000  
 
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
 
 
 
> Logsdata$Mako_shark<-junk$Mako_shark[match1] 
> summary(Logsdata$Mako_shark) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
    0.0      1.0         1.0          1.4     1.0         48.0  318574  
  
> Logsdata$Mako_shark<-ifelse((is.na(Logsdata$Mako_shark)),0,Logsdata$Mako_shark) 
> summary(Logsdata$Mako_shark) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1472  0.0000 48.0000  
> sum(Logsdata$Mako_shark) 
[1] 52458 
  
> Logsdata$Mako_Finned<-junk$NUMFINNED[match1] 
> Logsdata$Mako_Finned<-ifelse((is.na(Logsdata$Mako_Finned)),0,Logsdata$Mako_Finned) 
 
> Logsdata$Mako_Kept<-junk$NUMKEPT[match1] 
> Logsdata$Mako_Kept<-ifelse((is.na(Logsdata$Mako_Kept)),0,Logsdata$Mako_Kept) 
  
> Logsdata$Mako_Released<-junk$NUMRELEASED[match1] 
> Logsdata$Mako_Released<-
ifelse((is.na(Logsdata$Mako_Released)),0,Logsdata$Mako_Released) 
> sum(Logsdata$Mako_shark) 
[1] 52458 
> sum(Logsdata$Mako_Finned) 
[1] 2657 
> sum(Logsdata$Mako_Kept) 
[1] 20598 
> sum(Logsdata$Mako_Released) 
[1] 29203 
> 2657+20598+29023 
[1] 52278 
> 2657+20598+29203 
[1] 52458 
Correct 
 
 
Thresher shark 
> junk<-Log_Detail[Log_Detail$ENGLISH_NAME=="THRESHER SHARKS",] 
> dim(junk) 
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[1] 41887    25 
 
> junk$unique_set_ID1<-junk$unique_set_ID 
> mode(junk$unique_set_ID1) 
[1] "character" 
This allows linking this data frame with thresher shark records to the operational information. 
 
> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
> junk$Thresher_shark<-junk$NUMKEPT+junk$NUMFINNED+junk$NUMRELEASED 
 
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
 
> Logsdata$Thresher_shark<-junk$Thresher_shark[match1] 
> summary(Logsdata$Thresher_shark) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.     NA's  
    0.0     1.0          1.0          2.4       2.0      200.0   314570 
> Logsdata$Thresher_shark<-ifelse((is.na(Logsdata$Thresher_shark)),0, 
Logsdata$Thresher_shark) 
> summary(Logsdata$Thresher_shark) 
    Min.  1st Qu.   Median     Mean    3rd Qu.   Max.  
  0.0000   0.0000   0.0000   0.2815   0.0000 200.0000  
> sum(Logsdata$Thresher_shark) 
[1] 100347 
> Logsdata$Thresher_Finned<-junk$NUMFINNED[match1] 
> Logsdata$Thresher_Finned<-
ifelse((is.na(Logsdata$Thresher_Finned)),0,Logsdata$Thresher_Finned) 
> Logsdata$Thresher_Kept<-junk$NUMKEPT[match1] 
> Logsdata$Thresher_Kept<-
ifelse((is.na(Logsdata$Thresher_Kept)),0,Logsdata$Thresher_Kept) 
> Logsdata$Thresher_Released<-junk$NUMRELEASED[match1] 
> Logsdata$Thresher_Released<-
ifelse((is.na(Logsdata$Thresher_Released)),0,Logsdata$Thresher_Released) 
 
> summary(Logsdata$Thresher_Finned) 
    Min.     1st Qu.    Median     Mean    3rd Qu.     Max.  
 0.00000  0.00000  0.00000   0.01508  0.00000 50.00000  
> sum(Logsdata$Thresher_Finned) 
[1] 5375 
> summary(Logsdata$Thresher_Kept) 
    Min.    1st Qu.    Median     Mean    3rd Qu.     Max.  
 0.00000  0.00000  0.00000  0.02248  0.00000 42.00000  
> sum(Logsdata$Thresher_Kept) 
[1] 8013 
> summary(Logsdata$Thresher_Released) 



 

A-15 
 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  0.000   0.000    0.000     0.244   0.000   200.000  
> sum(Logsdata$Thresher_Released) 
[1] 86959 
 > 5375+8013+86959 
[1] 100347 
Correct 
 
 
Oceanic whitetip shark 
The logbook form first had an entry position for this species in 1995. 
> junk<-Log_Detail[Log_Detail$ENGLISH_NAME=="OCEANIC WHITETIP SHARK",] 
> dim(junk) 
[1] 9557   25 
> junk$unique_set_ID1<-junk$unique_set_ID 
> mode(junk$unique_set_ID1) 
[1] "character" 
 
> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
  
> junk$OWT_shark<-junk$NUMFINNED+junk$NUMKEPT+junk$NUMRELEASED 
 
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
  
> Logsdata$OWT_shark<-junk$OWT_shark[match1] 
> Logsdata$OWT_Finned<-ifelse(((is.na(Logsdata$OWT_Finned))& 
Logsdata$Haulyr>1994),0,Logsdata$OWT_Finned) 
> Logsdata$OWT_Kept<-ifelse(((is.na(Logsdata$OWT_Kept))& 
Logsdata$Haulyr>1994),0,Logsdata$OWT_Kept) 
> Logsdata$OWT_Released<-ifelse(((is.na(Logsdata$OWT_Released))& 
Logsdata$Haulyr>1994),0,Logsdata$OWT_Released) 
These commands differed from those used for the other sharks because this species was added to 
the form in 1995 so the entries from 1990 through 1994 should remain as “NA”. 
 
 
> Logsdata$OWT_shark<-
ifelse(Logsdata$Haulyr>1994,Logsdata$OWT_Finned+Logsdata$OWT_Kept+ 
Logsdata$OWT_Released,NA)  
> summary(Logsdata$OWT_shark) 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                                
0.00     0.00      0.00        0.06    0.00      32.00   48313  

junk<-Logsdata[Logsdata$Haulyr>1994,] 
> summary(junk$OWT_shark) 
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    Min.    1st Qu.    Median     Mean    3rd Qu.     Max.                                                                                    
0.00000  0.00000   0.00000  0.05524  0.00000 32.00000  
> summary(junk$OWT_Finned) 
    Min.       1st Qu.    Median     Mean      3rd Qu.      Max.                                                                              
0.000000 0.000000 0.000000 0.001645 0.000000 9.000000  
> summary(junk$OWT_Kept) 
    Min.       1st Qu.    Median     Mean      3rd Qu.     Max.                                                                          
0.000000 0.000000 0.000000 0.002612 0.000000 8.000000  
> summary(junk$OWT_Released) 
    Min.     1st Qu.     Median     Mean   3rd Qu.      Max.                                                                            
0.00000   0.00000   0.00000   0.05098  0.00000 32.00000  
> sum(junk$OWT_Finned) 
[1] 507 
> sum(junk$OWT_Kept) 
[1] 805 
> sum(junk$OWT_Released) 
[1] 15709 
> 15709+805+507 
[1] 17021 
> sum(junk$OWT_shark) 
[1] 17021 
 > Correct 
 
Swordfish 
The remaining species are teleosts so finned specimens would not be expected. 
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
> sum(junk$NUMKEPT) 
[1] 669960 
> sum(junk$NUMRELEASED) 
[1] 47252 
> 669960+47252 
[1] 717212 
> sum(junk$NUMFINNED) 
[1] 0 
As expected 
 
> junk$Swordfish<-junk$NUMKEPT+junk$NUMRELEASED 
> summary(junk$Swordfish) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1.00     1.00      4.00        6.67   10.00    103.00  
> sum(junk$Swordfish) 
[1] 717212 
Correct 
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
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> Logsdata$Swordfish<-junk$Swordfish[match1] 
> Logsdata$Swordfish<-ifelse((is.na(Logsdata$Swordfish)),0,Logsdata$Swordfish) 
  
> Logsdata$Sword_Kept<-junk$NUMKEPT[match1] 
> Logsdata$Sword_Kept<-ifelse((is.na(Logsdata$Sword_Kept)),0,Logsdata$Sword_Kept) 
  
> Logsdata$Sword_Released<-junk$NUMRELEASED[match1] 
> Logsdata$Sword_Released<-
ifelse((is.na(Logsdata$Sword_Released)),0,Logsdata$Sword_Released) 
  
> summary(Logsdata$Swordfish) 
   Min.  1st Qu.  Median    Mean    3rd Qu.    Max.  
  0.000    0.000    0.000      2.012    1.000    103.000  
> sum(Logsdata$Swordfish) 
[1] 717212 
  
> summary(Logsdata$Sword_Kept) 
   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.  
  0.000   0.000    0.000      1.879   1.000    103.000  
> sum(Logsdata$Sword_Kept) 
[1] 669960 
  
> summary(Logsdata$Sword_Released) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1326  0.0000 75.0000  
> sum(Logsdata$Sword_Released) 
[1] 47252 
 > 669960+47252 
[1] 717212 
Correct  
> 669960/717212 
[1] 0.9341171    High retention rate as expected for a primary target species. 
 
 
Blue marlin 
> junk<-Log_Detail[Log_Detail$ENGLISH_NAME=="BLUE MARLIN",] 
> dim(junk) 
[1] 67264    25 
  
> junk$unique_set_ID1<-junk$unique_set_ID 
> mode(junk$unique_set_ID1) 
[1] "character" 
  
> junk$NUMKEPT<-ifelse((is.na(junk$NUMKEPT)),0,junk$NUMKEPT) 
> junk$NUMRELEASED<-ifelse((is.na(junk$NUMRELEASED)),0,junk$NUMRELEASED) 
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> junk$NUMFINNED<-ifelse((is.na(junk$NUMFINNED)),0,junk$NUMFINNED) 
  
> sum(junk$NUMKEPT) 
[1] 120895 
> sum(junk$NUMRELEASED) 
[1] 2987 
> sum(junk$NUMFINNED) 
[1] 0 
 
  
> junk$Blue_marlin<-junk$NUMKEPT+junk$NUMRELEASED 
> summary(junk$Blue_marlin) 
   Min. 1st Qu.  Median     Mean   3rd Qu.    Max.  
  1.000   1.000    1.000       1.842    2.000    86.000  
  
> match1<-match(Logsdata$unique_set_ID1,junk$unique_set_ID1) 
> Logsdata$Blue_marlin<-junk$Blue_marlin[match1] 
> Logsdata$Blue_marlin<-ifelse((is.na(Logsdata$Blue_marlin)),0,Logsdata$Blue_marlin) 
> Logsdata$Blumar_Kept<-junk$NUMKEPT[match1] 
> Logsdata$Blumar_Kept<-ifelse((is.na(Logsdata$Blumar_Kept)),0,Logsdata$Blumar_Kept) 
  
> Logsdata$Blumar_Released<-junk$NUMRELEASED[match1] 
> Logsdata$Blumar_Released<-
ifelse((is.na(Logsdata$Blumar_Released)),0,Logsdata$Blumar_Released) 
  
> summary(Logsdata$Blue_marlin) 
   Min.    1st Qu.   Median    Mean     3rd Qu.    Max.  
 0.0000   0.0000   0.0000     0.3475   0.0000   86.0000  
> sum(Logsdata$Blue_marlin) 
[1] 123882 
  
> summary(Logsdata$Blumar_Kept) 
   Min.   1st Qu.  Median    Mean   3rd Qu.    Max.  
 0.0000  0.0000   0.0000    0.3392  0.0000 77.0000  
> sum(Logsdata$Blumar_Kept) 
[1] 120895 
 
 
  
> summary(Logsdata$Blumar_Released) 
    Min.    1st Qu.    Median     Mean    3rd Qu.     Max.  
 0.00000  0.00000  0.00000  0.00838  0.00000 45.00000  
> sum(Logsdata$Blumar_Released) 
[1] 2987 
  
> 120895+2987 
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[1] 123882 
Correct preparation for blue marlin. Maximum probably misidentifications. 
IDENTICAL PROCEDURES (not shown) FOLLOWED FOR THE OTHER TELEOSTS. 
Example A 3. Summary of the SST Data Matcher Instructions  
(We thank Lucas Moxey, formerly of the PIFSC, author of these instructions). 
In an effort to assist other divisions for matching satellite oceanographic data (SST, ocean color, 

etc) with particular dates and geographic locations (lat/lon), we can use a simple routine that will 

make use of Ferret for retrieving specific data points from the datasets that exist in the 

OceanWatch THREDDS server. 

The matcher routines are available in MAR, under /home/las/matcher  Here, the user will find 3 

directories, these being “bin”, “input_checker”, and “work”. In order to run the data matches, the 

user must follow these steps: 

1. Check that the list of data points for which we wish to correlate the satellite data has the 

correct format. In order to do this, a text file with the list of dates and lat/long values must 

be created. In this list, each line must follow the following exact format: 

col1 has values between 1 - 31 (no text) 

col2 has values of Jan - Dec (no numbers) 

col3 has values between 1980 - 2013 (no text) 

col4 has values between -180 through 180 (no text) 

col5 has values between -90 though 90 (no text) 

 

 This would result in a text file with a list of entries such as: 

  14 Nov 2001 150.833325 20.377075 

21 Oct 2001 160.942925 14.015 

11 Sep 2001 164.974175 13.062925 

30 Nov 2001 159.262525 23.322475 

5 Oct 2001 150.41125 4.97125 

 

In order to ensure that the file contains the information using the correct format, the user 

can simply run the command: 

  /home/las/matcher/input_checker/file_checker.pl <text file with list of entries> 

If there is an error or extraneous character somewhere in each line, this program 

will detect it and warn the user. 
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2. Once the list passes all the checks, the user must copy this file to the 

/home/las/matcher/work directory and rename the file as “sample1.xyt” 

 

3. Then, the user must change to the /home/las/matcher/bin directory and run the matcher 

command as: 

./make_matches_V3 <dataset> <interval> 

 

An example of matching the list with weekly AVHRR GAC SST data would be:    

              ./make_matches_V3 PF weekly 

 Once the processing is completed, an output file with the matched data will be generated 

in the bin directory, and will be named “FINAL_data_out.asc”. In this output file, each of these 

lines will have the original “to match” information (line 1 below), as well as the mid-point date 

and value of the matched SST data (line 2 below): 

14 Nov 2001 150.833325 20.377075 

14 Nov 2001 150.833325 20.377075        08-NOV-2001               28.80 

 
 
 
Necessary format and contents of the data to be used 
> head(SST_data) 
  Day Month Year      Long      Lat 
1  12   Nov 1991 -158.2500 17.06667 
2  14   Nov 1991 -157.4500 19.08333 
3  15   Nov 1991 -157.7000 19.68333 
4  11   Nov 1991 -158.6667 19.66667 
5  12   Nov 1991 -158.8333 19.33333 
6  13   Nov 1991 -158.8333 19.50000 
  
 
 
> tail(SST_data) 
            Day Month Year      Long      Lat 
356452  20   Jun 2014 -164.5167 15.01667 
356453  21   Jun 2014 -164.5833 15.03333 
356454  22   Jun 2014 -164.5167 15.06667 
356455  24   Jun 2014 -164.4417 18.04167 
356456  26   Jun 2014 -161.6583 19.44167 
356457  27   Jun 2014 -161.2833 19.65833 
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Write out the text file for the SST matcher using “write.table”, with white spaces as separators, a 
three-letter character variable for the month, all other variables numeric, and longitude with a 
negative sign. 
> write.table(SST_data,"SST_matcher_data.txt",sep=" “) 
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Example A 4. Summary of truncations and final preparations conducted with the PIFSC 

1990˗2014 longline logbook data before initiating accuracy evaluations.  

Several truncations were applied to the logbook data before initiating data accuracy evaluations. 

In general, these ensure that the ranges of operational variables in the logbook data are within 

those of the PIROP observer data and that missing values are removed. 

The initial truncation of the logbook data involved five steps: the evaluation period was defined 

as 1995˗2014; only commercial longline fishing was considered (i.e., no experimental or 

research fishing); all trips departed from and returned to Hawaiʻian ports; all sets were deployed 

>200 hooks; all sets were deployed above 1°N and between 130°˗179°W. In total, these steps 

lead to deletion of 20.1% of all logbook data from 1990˗2014. Catch data from deleted sets are 

generally accepted as accurate.  

.Study period: 1995˗2014 
This interval was characterized by PIROP coverage of this longline fleet. The observer data are 
the model-fitting data (Observer_95_14). Logbook (application) data are named accordingly. 
> dim(Logsdata) 
[1] 356457    100 
> Logs_95_14_1<-Logsdata[Logsdata$Haulyr>1994,] 
> dim(Logs_95_14_1) 
[1] 308144    100 
  
> 356457-308144 
[1] 48313 
> 100*(48313/356457) 
[1] 13.55367 
The initial truncation to the 20-year study period removes 13.6% of the sets. 
 
> table(Logs_95_14_1$Haulyr) 
 1995   1996   1997   1998   1999   2000   2001   2002   2003   2004   2005   2006   2007  
11732 11638 11846 12505 12805 12931 12186 14110 14883 16029 18195 17302 19385  
 2008   2009   2010   2011   2012    2013     2014  
19482 18572 17948 18641 19466   19734   8754  
The table is the annual number of sets since 1995. 
The first four years have been deleted --- Correct. 
The reasons for this truncation were that 1) 1995 was the first full year of operations for the 
PIROP; and 2) 1995 through 2014 was also convenient as a 20-year time series. 
 
Commercial longline fishing 
The data to be evaluated are restricted to commercial longline fishing logbooks. 
> table(Logs_95_14_1$ResExptCode) 
    LL      R      X  
305904   2017    223  
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> dim(Log_95_14_1) 
[1] 308144    103 
 
> Logs_95_14_2<-Log_95_14_1[(!(is.na(Log_95_14_1$ResExptCode))) & 
Log_95_14_1$ResExptCode=="LL",]  
> dim(Logs_95_14_2) 
[1] 305904    103 
> 308144-305904 
[1] 2240 
 
> dim(Logsdata) 
[1] 356457     97 
> 2240/308144 
[1] 0.0072693 
Deletion of research and experimental sets removes 0.8% of the longline sets since 1995. 
Correct --- checked against PIROP data and numbers of research and experimental sets close. 
 
Hooks>200 
> Logs_95_14_3<-Logs_95_14_2[Logs_95_14_2$Hooks>200,] 
> dim(Logs_95_14_2) 
[1] 305904    102 
> dim(Logs_95_14_3) 
[1] 305652    102 
> 904-652 
[1] 252 
  
> dim(Logs_95_14_1) 
[1] 308144    102 
> 100*(252/308144) 
[1] 0.08177995 
Deletion of very low hook numbers removes 0.08% of the longline sets since 1995. 
 
 
Positions  
> Logs_95_14_4<-Logs_95_14_3[Logs_95_14_3$Latitude>2 & 
(Logs_95_14_3$Longitude>130 & Logs_95_14_3$Longitude<179),] 
 > dim(Logs_95_14_3) 
[1] 305652    102 
> dim(Logs_95_14_4) 
[1] 304798    102 
 > 305652-304798 
[1] 854 
> 100*(854/308144) 
[1] 0.2771432 
> Sets near the extremes of the fishery comprised 0.3% of the logbook data since 1995. 
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SST 
summary(Logs_95_14_4$SST) 
   Min.  1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
  14.25   24.05     25.28      24.83   26.18    30.90   24047 
The large number of NA rreturns must be evaluated, but there is nothing obviously wrong about 
the range, quartiles, or measures of central tendency. 
No apparent need for an SST truncation. 
 
Two important points pertain to the following: it is necessary to include the negation of NA 

values for arrival ports; the LOG_HEADER file in ORACLE also includes departure ports, but 

there are more NA values than for the Arrival ports. 

Arrival ports 
> Logs_95_14_5<-Logs_95_14_4[(Logs_95_14_4$Return_Port=="HI" | 
Logs_95_14_4$Return_Port=="HNL" | Logs_95_14_4$Return_Port=="LIH") & 
(!(is.na(Logs_95_14_4$Return_Port))),] 
> dim(Logs_95_14_4) 
[1] 304798    102 
> dim(Logs_95_14_5) 
[1] 284708    102 
 > 304798-284708 
[1] 20090 
> 20090/308148 
[1] 0.06519594 
Removal of fishing that did not return to Hawaii removes 6.5% of the logbook data since 1995. 
The result of these procedures is a logbook data set for 1990˗2014 l in the form of a flat file as 
an R data frame. The Return-date fields retain large numbers of missing values but can be 
removed at any time. Small numbers of missing values for other fields may be imputed. This file 
is ready for initial use.  It is renamed accordingly.                               
N=284,708 sets (79.9% of the data since 1990; 92.4% since 1995) 
> Logs_95_14<-Logs_95_14_5   (RENAMED DATA FRAME) 
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APPENDIX B 
 

Analytical procedures used for logbook data accuracy evaluation  
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Example B 1. Summary of a zero-inflated negative binomial GLM (ZINB) fitted to PIROP 

observer data for use in evaluation of logbook data accuracy. The initial step entails fitting the 

ZINB model and checking its residuals to ensure that the model used to evaluate logbook data 

accuracy has been fitted to accurate observer data. 

The large residuals from the initial fit were checked by trips. A total of 42 trips with multiple (2-

11) large residuals (Pearson residual>5) were deleted from the ZINB-fitting data on the basis of 

misidentifications by PIROP observers. These errors have been reported multiple times but 

remain in the PIROP-reported catch data. 

Deleted trips (PIROP numbering system):  

“LL0094”, ”LL0105”, “LL0236”, ”LL0294”, ”LL0361”, “LL0396”, “LL0502”, “LL0507”, 

“LL0516”, “LL0557”, “LL0645”, “LL0657”, “LL1859”, “LL1877”, “LL2065”, “LL2279”, 

“LL2340”, “LL2344”, “LL2391”, “LL2402”, “LL2403”, “LL2505”, “LL2564”, “LL2718”, 

“LL2731”, “LL2787”, “LL2801”, “LL2865”, “LL2871”, “LL3020”, “LL3062”, “LL3290”, 

“LL3517”, “LL4298”, “LL4235”, “LL4264”,”LL3101”,”LL3156”, “LL3169”, “LL2694” 

A second data frame without these trips with systematic misidentifications is obtained by 

negating (with an exclamation point) trips for selection as follows (Tripnum is a character 

variable): 

Obsr_Corr_Data<-Observer_95_14[(!(Observer_95_14$Tripnum=="LL0094"| 

Observer_95_14$Tripnum=="LL0105" | Observer_95_14$Tripnum=="LL0236"| 

Observer_95_14$Tripnum=="LL0292" | Observer_95_14$Tripnum=="LL0361" | 

Observer_95_14$Tripnum=="LL0396" | Observer_95_14$Tripnum=="LL0502" | 

Observer_95_14$Tripnum=="LL0507"| Observer_95_14$Tripnum=="LL0516" | 

Observer_95_14$Tripnum=="LL0557"| Observer_95_14$Tripnum=="LL0645" | 

Observer_95_14$Tripnum=="LL0657" | Observer_95_14$Tripnum=="LL1859" | 

Observer_95_14$Tripnum=="LL1877" | Observer_95_14$Tripnum=="LL2065" | 

Observer_95_14$Tripnum=="LL2279" | Observer_95_14$Tripnum=="LL2340" | 

Observer_95_14$Tripnum=="LL2344"| Observer_95_14$Tripnum=="LL2391"| 

Observer_95_14$Tripnum=="LL2402"| Observer_95_14$Tripnum=="LL2403"| 

Observer_95_14$Tripnum=="LL2505"| Observer_95_14$Tripnum=="LL2564"| 

Observer_95_14$Tripnum=="LL2718"| Observer_95_14$Tripnum=="LL2731"| 

Observer_95_14$Tripnum=="LL2787"| Observer_95_14$Tripnum=="LL2801"| 
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Observer_95_14$Tripnum=="LL2865"| Observer_95_14$Tripnum=="LL2871"| 

Observer_95_14$Tripnum=="LL3020"| Observer_95_14$Tripnum=="LL3062"| 

Observer_95_14$Tripnum=="LL3290"| Observer_95_14$Tripnum=="LL3517"| 

Observer_95_14$Tripnum=="LL4298"| Observer_95_14$Tripnum=="LL4235"| 

Observer_95_14$Tripnum=="LL4264"|Observer_95_14$Tripnum=="LL3101"| 

Observer_95_14$Tripnum=="LL3156"|Observer_95_14$Tripnum=="LL3169"| 

Observer_95_14$Tripnum=="LL3503"| Observer_95_14$Tripnum=="LL3507"| 

Observer_95_14$Tripnum=="LL2694")),] 

 

> dim(Obsr_Corr_Data)                                                                                                                   

[1] 63535   121                                                                                                                                            

> dim(Observer_95_14)                                                                                                                                                 

[1] 64230   121                                                                                                                                                    

> 64230-63535                                                                                                                                               

[1] 695                                                                                                                                                          

> 695/64230                                                                                                                                                                    

[1] 0.01082049                                                                                                                                                                   

1.1% of the observed sets (0.9% of the observed trips) deleted for systematic misidentifications 

 

 

R commands to fit a ZINB                                                                                                                                   

Loading required package: lattice                                                                                                                

> library(pscl) 

Null model (ZINB)  

> null_ZINB<-zeroinfl(Blue_marlin~1+offset(log(Hooks)) | 1, data=Observer_95_14,          

dist="negbin",link="logit") 

> summary(null_ZINB)                                                                                                                             

Call:                                                                                                                                                 

zeroinfl(formula = Blue_marlin ~ 1 + offset(log(Hooks)) | 1, data = Observer_95_14,                      

dist = "negbin", link = "logit") 
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Pearson residuals:                                                                                                                                      

Min           1Q     Median      3Q      Max  

-0.4350 -0.3817 -0.3635 -0.2859 33.3092  

Count model coefficients (negbin with log link): 

             Estimate   Std. Error   z value   Pr(>|z|)     

(Intercept)  -8.98575    0.01112   -807.94   <2e-16 *** 

Log(theta)   -1.21003   0.02254   -53.69      <2e-16 *** 

Zero-inflation model coefficients (binomial with logit link): 

             Estimate Std. Error   z value    Pr(>|z|) 

(Intercept)    -10.55          18.93     -0.557      0.578 

Theta = 0.2982                                                                                                                                               

Log-likelihood: -3.746e+04 on 3 Df 

 

 

Zero-inflated negative binomial GLM (ZINB). 

Factors are the haul year and quarter, the fishing region, and the set type. Continuous variables 

are the SST, number of hooks per float, and begin-set time (All data, including trips with 

systematic misidentifications) 

> BluMar_ZINB<-                                                                                                                

zeroinfl(Blue_marlin~Haulyr1+Quarter1+Region1+Set_type1+SST+offset(log(Hooks)) | 

Quarter1+SST+BS_time+Hkpfl,data=Observer_95_14,dist="negbin",link="logit") 

> summary(BluMar_ZINB) 

Call:                                                                                                                                                   

zeroinfl(formula = Blue_marlin ~ Haulyr1 + Quarter1 + Region1 + Set_type1 + SST + 

offset(log(Hooks)) | Quarter1 + SST + BS_time + Hkpfl, data = Observer_95_14, dist = 

"negbin", link = "logit") 

Pearson residuals: 

    Min       1Q       Median      3Q       Max  

-1.0279  -0.4065  -0.2794  -0.1149  41.4775  

Count model coefficients (negbin with log    

Estimate  Std. Error z value  Pr(>|z|)     
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(Intercept)    -15.27202    0.59296 -25.756  < 2e-16 *** 

Haulyr11996  -0.41770    0.10548  -3.960  7.50e-05 *** 

Haulyr11997  -0.35505    0.11777  -3.015  0.00257 **  

Haulyr11998  -0.92677    0.11947  -7.757  8.67e-15 *** 

Haulyr11999  -0.97811    0.14362  -6.810  9.73e-12 *** 

Haulyr12000  -0.83358    0.09445  -8.825  < 2e-16 *** 

Haulyr12001  -0.84284    0.08666  -9.726  < 2e-16 *** 

Haulyr12002  -1.43783    0.08831 -16.281  < 2e-16 *** 

Haulyr12003  -1.20170    0.08653 -13.887  < 2e-16 *** 

Haulyr12004  -1.66794    0.08634 -19.318  < 2e-16 *** 

Haulyr12005  -1.24869    0.08453 -14.773  < 2e-16 *** 

Haulyr12006  -1.18272    0.08505 -13.906  < 2e-16 *** 

Haulyr12007  -1.86702    0.08809 -21.193  < 2e-16 *** 

Haulyr12008  -1.05893    0.08424 -12.571  < 2e-16 *** 

Haulyr12009  -1.52135    0.08595 -17.700  < 2e-16 *** 

Haulyr12010  -1.60631    0.08749 -18.359  < 2e-16 *** 

Haulyr12011  -1.56064    0.08664 -18.013  < 2e-16 *** 

Haulyr12012  -1.87288    0.08943 -20.942  < 2e-16 *** 

Haulyr12013  -1.85733    0.08965 -20.718  < 2e-16 *** 

Haulyr12014  -1.47693    0.08650 -17.074  < 2e-16 *** 

Quarter12      0.44926    0.06255   7.182  6.87e-13 *** 

Quarter13      0.36061    0.07182   5.021  5.13e-07 *** 

Quarter14      0.28693    0.07209   3.980  6.88e-05 *** 

Region12      -0.25868    0.12466  -2.075   0.03798 *   

Region13      -0.36469    0.12484  -2.921   0.00348 **  

Region14       0.23010    0.12088   1.904   0.05697 .   

Region15      -0.87568    0.12756  -6.865  6.65e-12 *** 

Region16      -0.29218    0.12621  -2.315   0.02061 *   

Region17      -1.02905    0.14564  -7.065  1.60e-12 *** 

Region18     -0.85285    0.14471  -5.893  3.78e-09 *** 

Set_type12     1.49350    0.05140  29.055   < 2e-16 *** 
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SST            0.30532    0.02172  14.058   < 2e-16 *** 

Log(theta)     0.48109    0.07214   6.668  2.59e-11 *** 

 

 

 

Zero-inflation model coefficients (binomial with logit link): 

             Estimate Std. Error z value  Pr(>|z|)     

(Intercept)   2.03471    1.19872   1.697    0.0896 .   

Quarter12    -0.12254    0.24281  -0.505    0.6138     

Quarter13     0.54881    0.25087   2.188    0.0287 *   

Quarter14     0.93950    0.22906   4.102   4.1e-05 *** 

SST          -0.34985    0.04110  -8.511   < 2e-16 *** 

BS_time       0.21362    0.02318   9.215   < 2e-16 *** 

Hkpfl         0.14384    0.01420  10.133   < 2e-16 *** 

Theta = 1.6178  

Log-likelihood: -3.223e+04 on 40 Df 

 

 

Zero-inflated negative binomial GLM. 

Factors are the haul year and quarter, the fishing region, and the set type. Continuous variables 

are the SST, number of hooks per float, and begin-set time (The next set of results are computed 

after deleting trips with systematic misidentifications). 

> null_ZINB_corr<-zeroinfl(Blue_marlin~1+offset(log(Hooks)) | 1, data=Obsr_Corr_Data,                                 

dist="negbin",link="logit") 

> AIC(null_ZINB_corr) 

[1] 72827.13 

  

> BluMar_ZINB_corr<-

zeroinfl(Blue_marlin~Haulyr1+Quarter1+Region1+Set_type1+SST+offset(log(Hooks)) | 

Quarter1+SST+BS_time+Hkpfl,data=Obsr_Corr_Data,dist="negbin",link="logit") 

> summary(BluMar_ZINB_corr) 
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Call:                                                                                                                                            

zeroinfl(formula = Blue_marlin ~ Haulyr1 + Quarter1 + Region1 + Set_type1 + SST + 

offset(log(Hooks)) | Quarter1 + SST + BS_time + Hkpfl, data = Obsr_Corr_Data,                                                                                                      

dist = "negbin", link = "logit") 

Pearson residuals: 

    Min      1Q      Median     3Q      Max  

-1.0876 -0.4043 -0.2751 -0.1050 51.3924  

Count model coefficients (negbin with log link): 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept) -15.32545  0.53391  -28.704  < 2e-16 *** 

Haulyr11996   -0.28514    0.10885  -2.620  0.008804 **  

Haulyr11997   -0.11443    0.11825  -0.968  0.333195     

Haulyr11998   -0.72964    0.12103  -6.029  1.65e-09 *** 

Haulyr11999   -0.75554    0.14541  -5.196  2.04e-07 *** 

Haulyr12000   -0.60009    0.09737  -6.163  7.14e-10 *** 

Haulyr12001  -0.79876    0.09189  -8.692  < 2e-16 *** 

Haulyr12002  -1.21696    0.09234 -13.180  < 2e-16 *** 

Haulyr12003  -0.93397    0.09079 -10.287  < 2e-16 *** 

Haulyr12004  -1.41817    0.09022 -15.718  < 2e-16 *** 

Haulyr12005  -1.00892    0.08870 -11.375  < 2e-16 *** 

Haulyr12006  -1.00131    0.08958 -11.178  < 2e-16 *** 

Haulyr12007  -1.64112    0.09272 -17.699  < 2e-16 *** 

Haulyr12008  -0.86944    0.08934  -9.731  < 2e-16 *** 

Haulyr12009  -1.28502    0.09017 -14.251  < 2e-16 *** 

Haulyr12010  -1.34100    0.09170 -14.623  < 2e-16 *** 

Haulyr12011  -1.28799    0.09084 -14.178  < 2e-16 *** 

Haulyr12012  -1.63095    0.09400 -17.351  < 2e-16 *** 

Haulyr12013  -1.58719    0.09357 -16.963  < 2e-16 *** 

Haulyr12014  -1.20032    0.09034 -13.287  < 2e-16 *** 

Quarter12     0.47155    0.05908   7.981 1.45e-15 *** 

Quarter13      0.37872    0.06758   5.604 2.09e-08 *** 
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Quarter14      0.24664    0.06914   3.567 0.000361 *** 

Region12      -0.25406    0.12076  -2.104 0.035384 *   

Region13      -0.45386    0.12040  -3.770 0.000163 *** 

Region14       0.16535    0.11658   1.418 0.156088     

Region15      -0.98345    0.12274  -8.013 1.12e-15 *** 

Region16      -0.40830    0.12181  -3.352 0.000803 *** 

Region17      -1.21818    0.14438  -8.437  < 2e-16 *** 

Region18      -1.03796    0.14370  -7.223 5.07e-13 *** 

Set_type12     1.60401    0.05046  31.790  < 2e-16 *** 

SST            0.30069    0.01929  15.592  < 2e-16 *** 

Log(theta)     0.76105    0.08625   8.824  < 2e-16 *** 

 

Zero-inflation model coefficients (binomial with logit link): 

      Estimate  Std. Error  z value  Pr(>|z|)     

(Intercept)  2.87358    1.07837   2.665    0.007705 **  

Quarter12    -0.15754   0.20454   -0.770  0.441157     

Quarter13    0.39453    0.22839   1.727  0.084089 .   

Quarter14    0.74329    0.21264   3.495  0.000473 *** 

SST             -0.35775   0.03869   -9.247   < 2e-16 *** 

BS_time      0.21143    0.02281   9.268   < 2e-16 *** 

Hkpfl           0.12627    0.01286   9.817   < 2e-16 *** 

Theta = 2.1405  

Log-likelihood: -3.106e+04 on 40 Df 

> AIC(BluMar_ZINB_corr) 

[1] 62199.16 
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Example B 2. Summary of the use of a generalized linear model (GLM), in this case a zero-

inflated negative binomial GLM (ZINB), to predict catches and of comparisons of reported to 

predicted catches in the context of the evaluation of logbook data accuracy.  

Application of a GLM (or GAM) object to logbook data necessarily begins with a second series 

of truncations. The R predict function cannot accept “NA” values for model covariates, meaning 

that there cannot be any “NA” values in the logbook data frame for the variables in the GLM 

object. If there are “NA” values, these are imputed if possible or deleted if necessary.  

In the present example, there were no missing values in the logbook data during 1995˗2014 for 

the dates of fishing (haul year, haul month, haul day), numbers of hooks set, and geographic 

positions, and moderate numbers of “NA” values for the hooks per float (309) and begin-set time 

fields. These can be checked and often corrected because values may be missing for some but 

not all sets on a trip, allowing substitution of the trip average (or median). Also, in the case of 

hooks per float, this can be investigated by tabulating this field for individual captains using the 

Commercial Marine License number, as follows: table(Logsdata$Hkpfl,Logsdata$CML). If 

the CML returns a single value for some captain for the hooks per float, it would mean that the 

captain in question always sets a certain number of hooks per float (e.g., 30 to target bigeye 

tuna). Missing values would be replaced in light of these personal tendencies.   

 

Extract a data frame with the NA values for the hooks per float field:  

> junkHPF<-Logs_95_14[is.na(Logs_95_14$Hkpfl),] 

> dim(junkHPF) 

[1] 309 102 

> summary(Logs_95_14$Hkpfl)                                                                                                              

Min.  1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                                 

2.00    24.00     26.00     24.17   30.00     88.00     309  

Correct 

 

Tabulate these missing values by captains using the CML. 

This is conveniently done using the table function to create objects that can be used to trace 

within-captain patterns of hooks per float use. The results showed that 113 captains had at least 
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one missing hook per float value, but four captains accounted for 29% (red boldface) of the 

total. These were traced to specific trips, as shown below.     

> table(junkHPF$CML) 
 1148  1326  1541  1586  1638  1669  1717  1749  1837  1910  2057  2066  2122  
    3      1 1        4        1        1        1        1        1        2        3        2        2  
 2141  2151  2189  2204  2205  2281  2285  2299  2413  2502  2503  2504  2561  
    1        1        2        1        2        1        5        1        2        4       17       2        1  
 2633  2676  2792  2799  2812  2927  3042  3073  3105  3163  3193  3229  3269  
    2        1        1        1        6        1        4        1        1        4        4        4        1  
 3319  3326  3329  3416  3443  3444  3462  3498  3524  3619  3767  3873  3888  
    2        3        1        3        3        1        1        1        1        4       15        3        1  
 3931  3979  3987  4022  4032  4035  4085  4189  4211  4228  4303  4361  4379  
    1        6        1        1        1        1        3        1        2        3        4        1        1  
 4413  4473  4475  4490  4558  4570  4574  4712  4759  4786  4809  4811  4824  
    7        1        4        7        1        8        1        1        2        5        1        1       30  
 5025  5082  5335  5407  5453  5639  5702  5741  5876  5941  6103  6388  6545  
    3        2        4        2        1        5        1        3        1        1        1        1        1  
 6741  6781  6819  6898  7340  7356  7394  7516  7713  7729  8202  8274  8481  
    1        1        1        1        1        1        2        1        1        1        3        1        1  
 8730  8815 10550 10933 11075 12177 12522 90005 90010  
    1        1         3        1         1         1         1         1        29 
The four licenses with 15 or more were checked.  

 

 

CML 4824 

> junkHPF1<-Logs_95_14[Logs_95_14$CML==4824 & (!(is.na(Logs_95_14$Hkpfl))),] 

> dim(junkHPF1)                                                                                                                                        

[1] 1401  102 

> table(junkHPF1$CML,junkHPF1$Hkpfl) 

             4     5     6   15   20   22   24     25     26    29 

  4824 167   23   9   27    2     8    52    962   122    1 

>  junkHPF1<-Logs_95_14[Logs_95_14$CML==4824 & (!(is.na(Logs_95_14$Hkpfl))),] 

> table(junkHPF1$Haulyr)                                                                                                                       

2001                                                                                                                                                               

30  

> junkHPF2<-junkHPF1[junkHPF1$Haulyr==2001,] 
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> junkHPF2$Hkpfl                                                                                                                                      

[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

NA NA NA  6  6  6  6  6  6  6  6  6 15 15 15 15 15 15 15 15 15 15 15 15 15  15 15 15 15 15 15 

15 15 15 15 15 15 15 15 15 NA NA NA 

These trips will be deleted because certain trips during 2001 were questionable regarding the 

actual target species. 

> dim(Logs_95_14)                                                                                                                                     

[1] 284708    102 

> Logs_95_14<-Logs_95_14[!((Logs_95_14$Tripnum==426 | Logs_95_14$Tripnum==508 | 

Logs_95_14$Tripnum==612 | Logs_95_14$Tripnum==693) & Logs_95_14$Haulyr==2001), ] 

> dim(Logs_95_14)                                                                                                                                     

[1] 284672    102                                                                                                                                                           

> 708-672[1]                                                                                                                                   

36     Correct                                                                                                                                                      

CML 2503 

 > junkHPF1<-Logs_95_14[Logs_95_14$CML==2503 & (is.na(Logs_95_14$Hkpfl)),] 

> junkHPF1$Tripnum 

 [1] 141 141 141 141 140 140 140 140 140 140 140 140 140 140 140 140 175 

> junkHPF1$Haulyr 

 [1] 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 

[16] 1996 1997 

> junkHPF1$Haulmo 

 [1] 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 

> junkHPF1$Haulday 

 [1] 30  1  3  4  6  7  8  9 10 11 12 13 14 15 16 17 19 

 

> junkHPF1<-Logs_95_14[Logs_95_14$CML==2503 & (!(is.na(Logs_95_14$Hkpfl))) & 

Logs_95_14$Haulyr==1996,] 

> dim(junkHPF1) 

[1]  70 102 

> summary(junkHPF1$Hkpfl) 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

     30      30          30           30        30          30  

These values were corrected as follows on the basis of within-year consistency.  

> Logs_95_14$Hkpfl<-ifelse((is.na(Logs_95_14$Hkpfl)) &  Logs_95_14$CML == 2503, 30, 

Logs_95_14$Hkpfl) 

 

CML 3767 

> junkHPF1<-Logs_95_14[Logs_95_14$CML==3767 & (!(is.na(Logs_95_14$Hkpfl))),] 

> dim(junkHPF1) 

[1] 533 102 

> table(junkHPF1$CML,junkHPF1$Hkpfl)       

       3      4    5    6   24   25   26   27    28    30 

  3767   5    69   34   1   10   44   78   23   102   139 

> Obtain NAs 

> junkHPF1<-Logs_95_14[Logs_95_14$CML==3767 & (is.na(Logs_95_14$Hkpfl)),] 

> dim(junkHPF1) 

[1]  15 102 

> junkHPF1$Tripnum 

 [1]  79  79  79  79  79  79  79  79  79  79  79  79  79  79 154 

> junkHPF1$Haulyr 

 [1] 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 1996 

> junkHPF1$Haulmo 

 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

> junkHPF1$Haulday 

 [1]  6  8  9 12 13 15 16 17 18 19 20 21 22 23  3 

summary(junkHPF1$Hkpfl) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

     30      30         30            30       30          30  

 

CML 90010 

> junkHPF1<-Logs_95_14[Logs_95_14$CML==90010 & (!(is.na(Logs_95_14$Hkpfl))),] 
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> dim(junknew) 

[1]  29 102 

> Correct 

> junknew$Tripnum 

 [1] 361 361 361 361 361 361 361 361 361 361 361 361 361 476 476 476 476 476 476 476 476 

476 476 476 476 476 476 476 476 

> junknew$Haulyr 

 [1] 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 

1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 1997 

These were two swordfish trips (i.e., shallow-set) trips during 1997. Hkpfl=4 for these trips. 

> junknew$Trip_type 

 [1] B B B B B B B B B B B B B B B B B B B B B B B B B B B B B 

> Logs_95_14$Hkpfl<-ifelse(Logs_95_14$CML==90010 & Logs_95_14$Trip_type== "B",4, 

Logs_95_14$Hkpfl) 

> junknew<-Logs_95_14[Logs_95_14$CML==90010,] 

> junknew$Hkpfl 

[1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA  4  4  4  4  4  4  4  4  4  4  4  4  4  4  

4  4  4  4  4  4  4  4  4  4  4  4  4  4  4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Correct number of changes. The main file (Logsdata) would be changed identically. 

The example has shown that three of the four captains with substantial numbers of missing 

values for hooks per float could be corrected on the basis of patterns. For simplicity, the 

remaining missing values will be imputed using the sector medians. 

> tapply(Logs_95_14$Hkpfl,Logs_95_14$Set_type1,median,na.rm=T) 

 1   2                                                                                                                                                                        

4   27  

> Logs_95_14$Hkpfl<-ifelse(((is.na(Logs_95_14$Hkpfl)) & Logs_95_14$Trip_type==T), 

30,Logs_95_14$Hkpfl) 

> summary(Logs_95_14$Hkpfl) 

   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's  

   2.00   24.00     26.00      24.17   30.00     88.00     263  
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> Logs_95_14$Hkpfl<-ifelse(((is.na(Logs_95_14$Hkpfl)) & Logs_95_14$Trip_type== "B") ,4, 

Logs_95_14$Hkpfl) 

> summary(Logs_95_14$Hkpfl) 

Min. 1st Qu.  Median    Mean  3rd Qu.    Max.    NA's                                                                             

2.00   24.00    26.00       24.16   30.00     88.00     236  

  

> Logs_95_14$Hkpfl<-ifelse(((is.na(Logs_95_14$Hkpfl)) & Logs_95_14$Trip_type=="T"), 27, 

Logs_95_14$Hkpfl) 

> summary(Logs_95_14$Hkpfl) 

   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.    NA's  

   2.00   24.00     26.00      24.17   30.00      88.00      67   

This shows that 196 of the 263 values were replaceable. 

 

 

 dim(Logs_95_14) 

[1] 284672    102 

> Logs_95_14<-Logs_95_14[!(is.na(Logs_95_14$Hkpfl)),] 

> summary(Logs_95_14$Hkpfl) 

   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.  

   2.00    24.00    26.00      24.17   30.00     88.00  

> dim(Logs_95_14) 

[1] 284605    102 

Correct number of deletions. 

 

 

Begin-set time 

> junkBS<-Logs_95_14[is.na(Logs_95_14$BS_Time),] 

> table(junkBS$CML) 
1036  1534  1541  1590  1725  1726  1760  1813  1837  1839  1910  1967  2018  2030  2038  2055  2065  2066 2122            
5        16      1      5      2      2       2     57    18      3      7     14      1     26     19     1      5      3      1  
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2189  2192  2205  2285  2299  2319  2321  2413  2424  2561  2709  2799  2812  2839  2864  3042  3074  3079 3083        
4         6      17     9      1      2      1      36      3      1     24     21     5      1      5      21     5      7      3  
3105  3218  3269  3286  3443  3496  3498  3619  3677  3767  3774  3839  3873  3929  3979  3987  4034  4085 4189     
3     1      4      1      2      4       2      3      4      2       2      1      3       2     4       1       1      1      3  
4211  4304  4332  4349  4379  4413  4526  4527  4574  4824  4954  4992  5117  5453  5554  5672  5953  6103 6388  

    1     1      12     8      8      3       3      2      4      8       3       1      5      4      1       1      5      1      5  
6520  6545  6696  6741  6746  6749  6781  6884  6935  7429  8019  8202  8346  8348  8499 9638 9975  9991 10763     
3        1       1      3       1      1       5      5      2       1      1      1      11    16      1     1     1      3      1  

10899 11875 12522 23150 23151 27309 71921 90017  

    1        1         1       1      1      1        1        4  

> dim(junkBS) 

[1] 553 102 

> 16+57+18+14+26+19+17+36+24+21+21+12+11+16                                                                                 

[1] 308 

> 308/553                                                                                                                                                    

[1] 0.556962 

56% of the missing values are traceable to 14 CMLs. If so desired, these could be traced like the 

hooks per float. Small numbers of missing set times can be replaced by mean or median within-

trip values. For simplicity, the missing values will be deleted in this example. 

> dim(Logs_95_14) 

[1] 284605    102 

> Logs_95_14<-Logs_95_14[!(is.na(Logs_95_14$BS_Time)),] 

> dim(Logs_95_14) 

[1] 284052    102 

> 4605-4052                                                                                                                                                     

[1] 553 

Correct number of deletions. 
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Sea surface temperature (SST°C) 

This is the final and most difficult step because the amount of missing data is far greater. 

> summary(Logs_95_14$SST)                                                                                                                 

Min.  1st Qu.  Median    Mean   3rd Qu.   Max.    NA's                                                                           

14.25   24.10     25.30     24.88    26.20     30.90   20527 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> dim(junkSST)                                                                                                                                 

[1] 20527   102 

> table(junkSST$Haulyr)                                                                                                                            

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2010 2011                                     

2936 2353 2579 2830 3072 1983 3345    2      2      378     4      35     12    984    12  

These are the missing values arranged by year. For simplicity, the period with minimal missing 

data is considered.  

Trips with missing SST values were identified. 

> junknew<-Logs_95_14[Logs_95_14$Haulyr==2003 & (Logs_95_14$Tripnum==12 | 

Logs_95_14$Tripnum==71),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T)                                                                                

12             71  

25.10647 27.75643                                                                                                                                    

These are the mean SST values for the other sets on Trips 12 and 71, respectively. These will be 

used for imputation. The following scripts do the same for five more years. 

> junknew<-Logs_95_14[Logs_95_14$Haulyr==2004 & (Logs_95_14$Tripnum==17 | 

Logs_95_14$Tripnum==47),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T) 

      17       47  

19.35235 21.18000  

> junknew<-Logs_95_14[Logs_95_14$Haulyr==2006 & (Logs_95_14$Tripnum==287 | 

Logs_95_14$Tripnum==301 | Logs_95_14$Tripnum==315 | Logs_95_14$Tripnum==317),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T) 

     287         301           315          317                                                                                                                          

18.12375 18.51455 18.23833 18.19077  
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 > junknew<-Logs_95_14[Logs_95_14$Haulyr==2007 & (Logs_95_14$Tripnum==6 | 

Logs_95_14$Tripnum==15 | Logs_95_14$Tripnum==20 | Logs_95_14$Tripnum==24 | 

Logs_95_14$Tripnum==36 | Logs_95_14$Tripnum==44 | Logs_95_14$Tripnum==49),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T) 

       6             15            20            24            36            44            49                                                                                        

24.94143 24.75167 24.59571 24.13000 25.28100 24.22167 24.95400  

  

> junknew<-Logs_95_14[Logs_95_14$Haulyr==2008 & (Logs_95_14$Tripnum==15 | 

Logs_95_14$Tripnum==20 | Logs_95_14$Tripnum==24 | Logs_95_14$Tripnum==30 | 

Logs_95_14$Tripnum==36 | Logs_95_14$Tripnum==49 | Logs_95_14$Tripnum==50),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T) 

      15            20            24            30            36            49           50                                                                                   

25.55867 23.92583 25.42667 24.94125 24.23167 24.91200 24.08583  

  

> junknew<-Logs_95_14[Logs_95_14$Haulyr==2011 & (Logs_95_14$Tripnum==17 | 

Logs_95_14$Tripnum==20 | Logs_95_14$Tripnum==195 | Logs_95_14$Tripnum==203 | 

Logs_95_14$Tripnum==221 | Logs_95_14$Tripnum==224 | Logs_95_14$Tripnum==229),]  

> tapply(junknew$SST,junknew$Tripnum,mean,na.rm=T) 

      17            20           195           203           221         224        229                                                                         

23.72955 24.38273 23.39077 22.70583 22.28300 24.27692 25.33250  

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

  14.25   24.10     25.30     24.88   26.20    30.90   20527  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2003) & 

(Logs_95_14$Tripnum==12)),25.1,Logs_95_14$SST)  

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                             

14.25    24.10     25.30      24.88  26.20     30.90   20526  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2003) & 

(Logs_95_14$Tripnum==71)), 27.8, Logs_95_14$SST)  

> summary(Logs_95_14$SST) 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                           

14.25    24.10     25.30     24.88   26.20     30.90   20525  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2004) & 

(Logs_95_14$Tripnum==17)),19.4, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2004) & 

(Logs_95_14$Tripnum==47)),21.2, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2006) & 

(Logs_95_14$Tripnum==287)),18.1 Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2006) & 

(Logs_95_14$Tripnum==301)),18.5, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2006) & 

(Logs_95_14$Tripnum==315)),18.2, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2006) & 

(Logs_95_14$Tripnum==317)),18.2, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==6)),24.9, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==15)),24.8, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==20)),24.6, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==24)),24.1, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==36)),25.3, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==44)),24.2, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==49)),25, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==1434)),25.6, Logs_95_14$SST)  
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> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2007) & 

(Logs_95_14$Tripnum==1454)),25.4, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==15)),25.6, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==20)),23.9, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==24)),25.4, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==30)),24.9, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==36)),24.2, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==49)), 24.9,Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2008) & 

(Logs_95_14$Tripnum==50)),24.1, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==17)),23.7, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==20)),24.4, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==195)),23.4, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==203)),22.7, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==221)),22.3, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==224)),24.3, Logs_95_14$SST)  

> Logs_95_14$SST<-ifelse(((is.na(Logs_95_14$SST)) & (Logs_95_14$Haulyr==2011) & 

(Logs_95_14$Tripnum==229)),25.3, Logs_95_14$SST)  

> summary(Logs_95_14$SST) 
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   Min. 1st Qu.  Median    Mean   3rd Qu.    Max.    NA's  

  14.25   24.10    25.30      24.88   26.20      30.90   20460  

> 527-460                                                                                                                                                       

[1] 67 

Correct number of data substitutions with within-trip mean SST values for five years. 

The much larger numbers of missing values in 2005 (378) and 2010 (984) are dealt with more 

efficiently. Data frames are created for each year and the within-trip mean SST values are 

computed. A match is created between the main logbook data frame and the within-year data 

frames that include the within-trip means as SST values. These means are matched to the trips 

with missing values to substitute for the latter. 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002 2005 2010  

2936 2353 2579 2830 3072 1983  3345  378  984  

 

Reversed --- obtain sets with SST 

> junkSST<-Logs_95_14[Logs_95_14$Haulyr==2005,] 

> SSTmean<-tapply(junkSST$SST,junkSST$Tripnum,mean,na.rm=T) 

> SSTtripnum<-tapply(junkSST$Tripnum,junkSST$Tripnum,unique) 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> mode(SSTdata$SSTtripnum) 

[1] "numeric" 

> sum(SSTdata$SSTtripnum) 

[1] 901824 

> mode(Logs_95_14$Tripnum) 

[1] "numeric" 

> sum(Logs_95_14$Tripnum) 

[1] 182081218 

 > SSTdata$Tripnum<-SSTdata$SSTtripnum 

> sum(SSTdata$Tripnum) 

[1] 901824 
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> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2005 

,SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                                                   

14.25    24.10      25.30     24.88   26.20     30.90   20088  

> 460-88                                                                                                                                                       

[1] 372 

 

Check for six missing values. 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002 2005 2010                                                                                       

2936 2353 2579 2830 3072 1983 3345    6     984  

Values were traced to one trip; the return was “NaN“ (i.e., not computed, not a number.) 

> dim(Logs_95_14)                                                                                                                                      

[1] 284052    102 

> Logs_95_14<-Logs_95_14[!(Logs_95_14$Haulyr==2005 & Logs_95_14$Tripnum==1395),] 

> dim(Logs_95_14)                                                                                                                                                    

[1] 284046    102 

Correct number of deletions. 

> junkSST<-Logs_95_14[Logs_95_14$Haulyr==2010,] 

> SSTmean<-tapply(junkSST$SST,junkSST$Tripnum,mean,na.rm=T) 

> SSTtripnum<-tapply(junkSST$Tripnum,junkSST$Tripnum,unique) 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2010, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 
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> summary(Logs_95_14$SST)                                                                                                                      

Min.   1st Qu.   Median    Mean  3rd Qu.   Max.    NA's                                                                                        

14.25    24.10     25.30      24.88   26.20    30.90   19106 

> 20088-19106                                                                                                                                                     

[1] 982 

Probably like 2005. 

> dim(Logs_95_14)                                                                                                                               

[1] 284046    102 

Years with many missing values treated comparably. 

2010 

> Logs_95_14<-Logs_95_14[(!(Logs_95_14$Haulyr==2010 & (is.na(Logs_95_14$SST)))),] 

> dim(Logs_95_14)                                                                                                                                       

[1] 284038    102 

> summary(Logs_95_14$SST)  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

  14.25   24.10    25.30     24.88   26.20     30.90   19098  

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002  

2936 2353 2579 2830 3072 1983 3345  

 

1996  

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1996,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1996),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 1076 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1076 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 
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> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1996, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST)  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                        

14.25    24.08     25.30     24.86   26.20     30.90   16268  

  

1997 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997  1998 1999 2000 2001 2002  

 106  2353  2579 2830 3072 1983 3345  

  

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1997,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1997),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 1111 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1111 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & 

Logs_95_14$Haulyr==1997,SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST)  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

  14.25   24.06    25.28     24.84   26.18     30.90   13991  
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1998 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002  

 106   76 2579 2830 3072 1983 3345  

 

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1998,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1998),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 1134 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1134 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1998, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST)  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                               

14.25    24.05     25.28      24.83   26.18    30.90   11439  

 

1999 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002  

 106    76     27   2830 3072 1983 3345  

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1999,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1999),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 
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> length(SSTmean) 

[1] 1127 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1127 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==1999, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST)  

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                          

14.25    24.03     25.27     24.81   26.17     30.90    8670  

 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002  

 106     76     27     61   3072 1983 3345  

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2000,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2000),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 1095 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1095 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2000, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 
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> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's                                                                                       

14.25    24.02     25.27     24.80   26.17     30.90    5635  

 

 

 

2001 

> junkSST<-Logs_95_14[(is.na(Logs_95_14$SST)),] 

> table(junkSST$Haulyr) 

1996 1997 1998 1999 2000 2001 2002  

 106    76     27     61     37   1983 3345  

  

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2001,] 

> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2001),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 869 

>  SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 869 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2001, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

  14.25   24.03    25.27     24.81   26.18     30.90    3672  

  

 

2002 

> junkSST1<-Logs_95_14[(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2002,] 
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> junkSST2<-Logs_95_14[(!(is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2002),] 

> SSTmean<-tapply(junkSST2$SST,junkSST2$Tripnum,mean,na.rm=T) 

> length(SSTmean) 

[1] 1117 

> SSTtripnum<-tapply(junkSST2$Tripnum,junkSST2$Tripnum,unique) 

> length(SSTtripnum) 

[1] 1117 

> SSTdata<-data.frame(SSTtripnum,SSTmean) 

> SSTdata$Tripnum<-SSTdata$SSTtripnum 

> match1<-match(Logs_95_14$Tripnum,SSTdata$Tripnum) 

> Logs_95_14$SST<-ifelse((is.na(Logs_95_14$SST)) & Logs_95_14$Haulyr==2002, 

SSTdata$SSTmean[match1],Logs_95_14$SST) 

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  

  14.25   24.05    25.28     24.82   26.18     30.90     397  
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Truncations performed to make prediction with R feasible: 

> dim(Logs_95_14_5) 

[1] 284708    102 

> dim(Logs_95_14) 

[1] 284038    102 

Removal of remaining missing SST values.   

> Logs_95_14<-Logs_95_14[!(is.na(Logs_95_14$SST)),] 

> dim(Logs_95_14) 

[1] 283641    102 

> 4708-3641 

[1] 1067 

  

> 1067/284708 

[1] 0.003747699 

Missing SST values that could not be replaced by within-trip means comprised 0.3% of the sets. 

 

 

 

 

Creating factors in log data 

> summary(Logs_95_14$Haulyr) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1996    2002    2006       2006    2010    2014  

> summary(Logs_95_14$Haulyr1) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   1996    2002    2006       2006    2010      2014  

> Logs_95_14$Haulyr1<-as.factor(as.numeric(Logs_95_14$Haulyr1)) 

> summary(Logs_95_14$Quarter) 

   Min. 1st Qu.  Median    Mean  3rd Qu.    Max.  

  1.000   1.000    2.000      2.471   4.000     4.000  

> summary(Logs_95_14$Quarter1) 
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   1.000   2.000      2.471   4.000     4.000  

> Logs_95_14$Quarter1<-as.factor(as.numeric(Logs_95_14$Quarter1)) 

> summary(Logs_95_14$Region) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   4.000   5.000      4.764   6.000   8.000  

> summary(Logs_95_14$Region1) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   4.000   5.000      4.764   6.000   8.000  

> Logs_95_14$Region1<-as.factor(as.numeric(Logs_95_14$Region1)) 

> summary(Logs_95_14$Haulyr1) 

 1996  1997   1998    1999  2000   2001   2002    2003   2004   2005  2006    2007   2008  

11339 11607 12278 12508 12774 10023 13397 14109 15832 15630 15910 18720 19005  

 2009   2010   2011   2012   2013   2014  

18257 17443 18136 19050 19211  8412  

Checks on continuous variables. No missing values indicates that prediction should work. 

> summary(Logs_95_14$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  14.25   24.05   25.28   24.82   26.18   30.90  

> summary(Logs_95_14$Hkpfl) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

   2.00   24.00   26.00   24.21   30.00   88.00  

> summary(Logs_95_14$BS_Time) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.000   7.067   8.000      9.186   9.000    24.000  

 

 

Removal of observed sets  

> table(Logs_95_14$Observed_set) 

     0          1                                                                                                                                                    

223984  59657 
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> Logs_95_14_Apply1<-Logs_95_14[Logs_95_14$Observed_set==0,] 

> table(Logs_95_14_Apply1$Observed_set) 

     0                                                                                                                                                         

223984  

A new data frame (Logs_95_14_Apply1) contains only unobserved logbook sets with no missing 

values for any of the covariates in the prediction model (BluMar_ZINB)? 

 
 
Example B_3. Prediction of catches using a zero-inflated negative binomial GLM for blue 

marlin to serve as a comparison standard for unobserved fishing trips. 

> summary(Logs_95_14_Apply1$Latitude) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  2.067  17.230  21.410  21.380  25.720  45.360  

> summary(Obsr_Corr_Data$Latitude) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  0.275  18.230  23.240  23.010  28.300  44.560  

  

> summary(Logs_95_14_Apply1$Longitude) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  130.0   154.8   159.4      158.7    163.0   179.0  

> summary(Obsr_Corr_Data$Longitude) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  134.6   154.0    158.7      158.1   162.8    179.9  

  

> summary(Logs_95_14_Apply1$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  14.25   24.17   25.33   24.97   26.20   30.70  

> summary(Obsr_Corr_Data$SST) 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  14.74   23.55    25.17      24.37   26.18    30.60 

These summaries suggest some further truncations may be needed. Check predictions. 



 

B-31 
 

The R predict function is applied to the GLM object; “type=response” obtains the response 
variable back-transformed to the original units; and newdata=”Logs_95_14_Apply1” identifies 
the data frame to which the model coefficients are applied. 
> test<-predict(BluMar_ZINB_corr, type="response", newdata=Logs_95_14_Apply1, 
link="logit", family="negbin") 
> length(test) 
[1] 223984 
> summary(test) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's  
 0.0001  0.0737  0.1628  0.2802  0.3658  7.9420     216  
> summary(Logs_95_14_Apply1$Blue_marlin) 
   Min.   1st Qu.  Median    Mean   3rd Qu.    Max.  
 0.0000  0.0000   0.0000    0.3254  0.0000  44.0000 
Check on additional truncation 
Logs_95_14_Apply2<-Logs_95_14_Apply1[(Logs_95_14_Apply1$Latitude>3 & 
Logs_95_14_Apply1$ Latitude<43)  & Logs_95_14_Apply1$Longitude>135,] 
> Logs_95_14_Apply2<-Logs_95_14_Apply1[(Logs_95_14_Apply1$Latitude>3 & 
Logs_95_14_Apply1$Latitude<43) & Logs_95_14_Apply1$Longitude>135,] 
> test_Apply2<-predict(BluMar_ZINB_corr, type="response", newdata=Logs_95_14_Apply2, 
link="logit", family="negbin") 
> summary(test_Apply2) 
   Min.    1st Qu.   Median    Mean   3rd Qu.   Max.     NA's  
0.00010 0.07383 0.16290 0.28020 0.36580 7.94200     215  
> dim(Logs_95_14_Apply1) 
[1] 223984    103 
> dim(Logs_95_14_Apply2) 
[1] 223701    103 
> 984-701 
[1] 283 
The very small changes in the predictions indicate that the additional truncation is not required. 
Use of the ZINB model to predict catches to serve as comparison standards for logbooks from 

unobserved fishing trips is presented in Example_B_3_Figure 1. The trends illustrate ongoing 

pattern of upward bias in the logbook data caused by species misidentifications. The apparent 

deviation from the trend in 2000 probably resulted from an extrinsic factor. Shortbill spearfish 

were extremely numerous in the catch throughout the autumn and winter months of 2000, and 

captains may have misidentified blue marlin as shortbill spearfish from habit because the latter 

were at such a high level of seasonal abundance (Walsh & Bigelow: “Where the Billfishes Were 

(and Were Not).” Presentation to the 56th International Conference, Lake Arrowhead, CA, May 

2005). 

The remainder of the procedure is straightforward. For convenience, the vector of predictions 

can be assigned to the data frame subject to prediction. The linear regression of the reported 
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values on the predicted values is computed (possibly using appropriate transformations), and the 

studentized residuals or other objective criterion obtained from the R regression object. These 

can be tabulated by CML, with individuals with large numbers of potential outliers investigated 

first. See Crawley (2013) for details of prediction from a GLM in R. 
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Example_B 3_Figure 1. Comparison plot depicting use of a zero-inflated negative binomial 

GLM to predict longline catches to serve as a comparison standard for unobserved fishing.
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APPENDIX C 
 

Forms used for research in the Hawaii longline fishery 

Current PIFSC logbook form 

PIROP Observer Catch Event Log 

PIROP Observer Gear Configuration Form 

PIROP Observer Set and Haul Information Form 
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PIFSC Logbook Form         
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Observer Catch Event Log
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Observer Gear Configuration Form 
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Observer Set and Haul Information Form 
 

 
  



 

 
 

Availability of NOAA Technical Memorandum NMFS 
 
Copies of this and other documents in the NOAA Technical Memorandum NMFS series issued 
by the Pacific Islands Fisheries Science Center are available online at the PIFSC Web 
site http://www.pifsc.noaa.gov in PDF format. In addition, this series and a wide range of other 
NOAA documents are available in various formats from the National Technical Information 
Service, 5285 Port Royal Road, Springfield, VA 22161, U.S.A. [Tel: (703)-605-6000]; 
URL: http://www.ntis.gov. A fee may be charged. 
 
Recent issues of NOAA Technical Memorandum NMFS–PIFSC are listed below: 
 
NOAA-TM-NMFS-PIFSC-56 2012 economic cost earnings of pelagic longline fishing in 

Hawaii.  
K.O.  KALBERG and M. PAN 
(October 2016) 

     
55 Hawaii Marine Recreational Fishing Survey: a summary of 

current sampling, estimation and data analyses  
H. MA and T.K. OGAWA 

 (September 2016) 
     

54 Proceedings of the 2015 international summit on 
fibropapillomatosis: global status, trends, and population 
impacts. 

 S. HARGROVE, T. WORK, S. BRUNSON, A.M. FOLEY and 
G. BALZAS 

 (August 2016) 
 

http://www.pifsc.noaa.gov/
http://www.ntis.gov/
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